Variational quantum algorithm with information sharing
Abstract We introduce an optimisation method for variational quantum algorithms and experimentally demonstrate a 100-fold improvement in efficiency compared to naive implementations. The effectiveness of our approach is shown by obtaining multi-dimensional energy surfaces for small molecules and a s...
Enregistré dans:
Auteurs principaux: | Chris N. Self, Kiran E. Khosla, Alistair W. R. Smith, Frédéric Sauvage, Peter D. Haynes, Johannes Knolle, Florian Mintert, M. S. Kim |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/df508c9fc03941c3b4af813f7440ce5c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Classical variational simulation of the Quantum Approximate Optimization Algorithm
par: Matija Medvidović, et autres
Publié: (2021) -
Research on Multiscene Vehicle Dataset Based on Improved FCOS Detection Algorithms
par: Fei Yan, et autres
Publié: (2021) -
An Empirical Study on Intelligent Rural Tourism Service by Neural Network Algorithm Models
par: Jingzhi Chen, et autres
Publié: (2021) -
A quantum algorithm for string matching
par: Pradeep Niroula, et autres
Publié: (2021) -
Comparative Study on Heart Disease Prediction Using Feature Selection Techniques on Classification Algorithms
par: Kaushalya Dissanayake, et autres
Publié: (2021)