Characterization of the proton pulsed beam at CMAM
In this paper, the technicalities performed to obtain a pulsed beam at the CMAM facility will be explained. The pulsed beam has been characterized with an 8 MeV proton beam, using an existing equipment at CMAM: two pairs of electrostatic plates (RASTER) that deflect the beam, commonly used for homog...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df6acc838a98489689649b4c9e487b39 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, the technicalities performed to obtain a pulsed beam at the CMAM facility will be explained. The pulsed beam has been characterized with an 8 MeV proton beam, using an existing equipment at CMAM: two pairs of electrostatic plates (RASTER) that deflect the beam, commonly used for homogeneous irradiation of large areas. A pulsed beam is used in many areas such as nuclear physics, material science and, in particular, for proton-therapy medical studies. Rectangular and pyramidal functions have been used to generate different pulses and characterize the response of the RASTER. The results point out that the pulses obtained are suitable for preclinical proton-therapy studies in the FLASH regime, which consists on fractionating the dose in time with short and intense pulses. The set-up for the characterization has been a function generator and a Si-PM outside the chamber. |
---|