Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate

Biology can profoundly influence the planet’s climate, but over Earth’s long history these effects are poorly constrained. Here the authors show that on early Earth, the evolution of microbes producing and consuming methane likely controlled warming and glacial events, and thus Earth’s habitability...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Boris Sauterey, Benjamin Charnay, Antonin Affholder, Stéphane Mazevet, Régis Ferrière
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/df77efa3d0174e87a26a4617e3079db1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:df77efa3d0174e87a26a4617e3079db1
record_format dspace
spelling oai:doaj.org-article:df77efa3d0174e87a26a4617e3079db12021-12-02T18:24:49ZCo-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate10.1038/s41467-020-16374-72041-1723https://doaj.org/article/df77efa3d0174e87a26a4617e3079db12020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16374-7https://doaj.org/toc/2041-1723Biology can profoundly influence the planet’s climate, but over Earth’s long history these effects are poorly constrained. Here the authors show that on early Earth, the evolution of microbes producing and consuming methane likely controlled warming and glacial events, and thus Earth’s habitabilityBoris SautereyBenjamin CharnayAntonin AffholderStéphane MazevetRégis FerrièreNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Boris Sauterey
Benjamin Charnay
Antonin Affholder
Stéphane Mazevet
Régis Ferrière
Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate
description Biology can profoundly influence the planet’s climate, but over Earth’s long history these effects are poorly constrained. Here the authors show that on early Earth, the evolution of microbes producing and consuming methane likely controlled warming and glacial events, and thus Earth’s habitability
format article
author Boris Sauterey
Benjamin Charnay
Antonin Affholder
Stéphane Mazevet
Régis Ferrière
author_facet Boris Sauterey
Benjamin Charnay
Antonin Affholder
Stéphane Mazevet
Régis Ferrière
author_sort Boris Sauterey
title Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate
title_short Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate
title_full Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate
title_fullStr Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate
title_full_unstemmed Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate
title_sort co-evolution of primitive methane-cycling ecosystems and early earth’s atmosphere and climate
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/df77efa3d0174e87a26a4617e3079db1
work_keys_str_mv AT borissauterey coevolutionofprimitivemethanecyclingecosystemsandearlyearthsatmosphereandclimate
AT benjamincharnay coevolutionofprimitivemethanecyclingecosystemsandearlyearthsatmosphereandclimate
AT antoninaffholder coevolutionofprimitivemethanecyclingecosystemsandearlyearthsatmosphereandclimate
AT stephanemazevet coevolutionofprimitivemethanecyclingecosystemsandearlyearthsatmosphereandclimate
AT regisferriere coevolutionofprimitivemethanecyclingecosystemsandearlyearthsatmosphereandclimate
_version_ 1718378130174902272