Transfer learning for ECG classification
Abstract Remote monitoring devices, which can be worn or implanted, have enabled a more effective healthcare for patients with periodic heart arrhythmia due to their ability to constantly monitor heart activity. However, these devices record considerable amounts of electrocardiogram (ECG) data that...
Guardado en:
Autores principales: | Kuba Weimann, Tim O. F. Conrad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df807c03d73744959547ff9456ab9316 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ECG-based machine-learning algorithms for heartbeat classification
por: Saira Aziz, et al.
Publicado: (2021) -
Personalized Federated Learning for ECG Classification Based on Feature Alignment
por: Renjie Tang, et al.
Publicado: (2021) -
Classification of ECG signals using multi-cumulants based evolutionary hybrid classifier
por: Sahil Dalal, et al.
Publicado: (2021) -
Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections
por: Young-Gon Kim, et al.
Publicado: (2020) -
Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images
por: Guangzhou An, et al.
Publicado: (2021)