Attaining Carnot efficiency with quantum and nanoscale heat engines
Abstract A heat engine operating in the one-shot finite-size regime, where systems composed of a small number of quantum particles interact with hot and cold baths and are restricted to one-shot measurements, delivers fluctuating work. Further, engines with lesser fluctuation produce a lesser amount...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/df8a0986cd1c4e6d88c9d9eb17592b09 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract A heat engine operating in the one-shot finite-size regime, where systems composed of a small number of quantum particles interact with hot and cold baths and are restricted to one-shot measurements, delivers fluctuating work. Further, engines with lesser fluctuation produce a lesser amount of deterministic work. Hence, the heat-to-work conversion efficiency stays well below the Carnot efficiency. Here we overcome this limitation and attain Carnot efficiency in the one-shot finite-size regime, where the engines allow the working systems to simultaneously interact with two baths via the semi-local thermal operations and reversibly operate in a one-step cycle. These engines are superior to the ones considered earlier in work extraction efficiency, and, even, are capable of converting heat into work by exclusively utilizing inter-system correlations. We formulate a resource theory for quantum heat engines to prove the results. |
---|