Retrospective on a decade of machine learning for chemical discovery

Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electron...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: O. Anatole von Lilienfeld, Kieron Burke
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/df8a833a0e9a45df941e56a6116b39e1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electronic structure, interatomic potentials, and chemical compound space in chronological order.