Retrospective on a decade of machine learning for chemical discovery

Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electron...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: O. Anatole von Lilienfeld, Kieron Burke
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/df8a833a0e9a45df941e56a6116b39e1
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electronic structure, interatomic potentials, and chemical compound space in chronological order.