Retrospective on a decade of machine learning for chemical discovery

Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electron...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: O. Anatole von Lilienfeld, Kieron Burke
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/df8a833a0e9a45df941e56a6116b39e1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:df8a833a0e9a45df941e56a6116b39e1
record_format dspace
spelling oai:doaj.org-article:df8a833a0e9a45df941e56a6116b39e12021-12-02T17:18:08ZRetrospective on a decade of machine learning for chemical discovery10.1038/s41467-020-18556-92041-1723https://doaj.org/article/df8a833a0e9a45df941e56a6116b39e12020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18556-9https://doaj.org/toc/2041-1723Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electronic structure, interatomic potentials, and chemical compound space in chronological order.O. Anatole von LilienfeldKieron BurkeNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-4 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
O. Anatole von Lilienfeld
Kieron Burke
Retrospective on a decade of machine learning for chemical discovery
description Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electronic structure, interatomic potentials, and chemical compound space in chronological order.
format article
author O. Anatole von Lilienfeld
Kieron Burke
author_facet O. Anatole von Lilienfeld
Kieron Burke
author_sort O. Anatole von Lilienfeld
title Retrospective on a decade of machine learning for chemical discovery
title_short Retrospective on a decade of machine learning for chemical discovery
title_full Retrospective on a decade of machine learning for chemical discovery
title_fullStr Retrospective on a decade of machine learning for chemical discovery
title_full_unstemmed Retrospective on a decade of machine learning for chemical discovery
title_sort retrospective on a decade of machine learning for chemical discovery
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/df8a833a0e9a45df941e56a6116b39e1
work_keys_str_mv AT oanatolevonlilienfeld retrospectiveonadecadeofmachinelearningforchemicaldiscovery
AT kieronburke retrospectiveonadecadeofmachinelearningforchemicaldiscovery
_version_ 1718381173347975168