Retrospective on a decade of machine learning for chemical discovery
Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electron...
Guardado en:
Autores principales: | O. Anatole von Lilienfeld, Kieron Burke |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df8a833a0e9a45df941e56a6116b39e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine learning based energy-free structure predictions of molecules, transition states, and solids
por: Dominik Lemm, et al.
Publicado: (2021) -
Machine learning for chemical discovery
por: Alexandre Tkatchenko
Publicado: (2020) -
Bypassing the Kohn-Sham equations with machine learning
por: Felix Brockherde, et al.
Publicado: (2017) -
Machine learning guided aptamer refinement and discovery
por: Ali Bashir, et al.
Publicado: (2021) -
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020)