Retrospective on a decade of machine learning for chemical discovery
Standfirst Over the last decade, we have witnessed the emergence of ever more machine learning applications in all aspects of the chemical sciences. Here, we highlight specific achievements of machine learning models in the field of computational chemistry by considering selected studies of electron...
Enregistré dans:
Auteurs principaux: | O. Anatole von Lilienfeld, Kieron Burke |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/df8a833a0e9a45df941e56a6116b39e1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine learning based energy-free structure predictions of molecules, transition states, and solids
par: Dominik Lemm, et autres
Publié: (2021) -
Machine learning for chemical discovery
par: Alexandre Tkatchenko
Publié: (2020) -
Bypassing the Kohn-Sham equations with machine learning
par: Felix Brockherde, et autres
Publié: (2017) -
Machine learning guided aptamer refinement and discovery
par: Ali Bashir, et autres
Publié: (2021) -
Machine learning in chemical reaction space
par: Sina Stocker, et autres
Publié: (2020)