The suitability of smartphone camera sensors for detecting radiation
Abstract The advanced image sensors installed on now-ubiquitous smartphones can be used to detect ionising radiation in addition to visible light. Radiation incidents on a smartphone camera’s Complementary Metal Oxide Semiconductor (CMOS) sensor creates a signal which can be isolated from a visible...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df8dce665d35494e8955ad4c5858480c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:df8dce665d35494e8955ad4c5858480c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:df8dce665d35494e8955ad4c5858480c2021-12-02T17:41:28ZThe suitability of smartphone camera sensors for detecting radiation10.1038/s41598-021-92195-y2045-2322https://doaj.org/article/df8dce665d35494e8955ad4c5858480c2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92195-yhttps://doaj.org/toc/2045-2322Abstract The advanced image sensors installed on now-ubiquitous smartphones can be used to detect ionising radiation in addition to visible light. Radiation incidents on a smartphone camera’s Complementary Metal Oxide Semiconductor (CMOS) sensor creates a signal which can be isolated from a visible light signal to turn the smartphone into a radiation detector. This work aims to report a detailed investigation of a well-reviewed smartphone application for radiation dosimetry that is available for popular smartphone devices under a calibration protocol that is typically used for the commercial calibration of radiation detectors. The iPhone 6s smartphone, which has a CMOS camera sensor, was used in this study. Black tape was utilized to block visible light. The Radioactivity counter app developed by Rolf-Dieter Klein and available on Apple’s App Store was installed on the device and tested using a calibrated radioactive source, calibration concrete pads with a range of known concentrations of radioactive elements, and in direct sunlight. The smartphone CMOS sensor is sensitive to radiation doses as low as 10 µGy/h, with a linear dose response and an angular dependence. The RadioactivityCounter app is limited in that it requires 4–10 min to offer a stable measurement. The precision of the measurement is also affected by heat and a smartphone’s battery level. Although the smartphone is not as accurate as a conventional detector, it is useful enough to detect radiation before the radiation reaches hazardous levels. It can also be used for personal dose assessments and as an alarm for the presence of high radiation levels.Yehia H. JoharyJamie TrappAli AamryHussin AamriN. TamamA. SuliemanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yehia H. Johary Jamie Trapp Ali Aamry Hussin Aamri N. Tamam A. Sulieman The suitability of smartphone camera sensors for detecting radiation |
description |
Abstract The advanced image sensors installed on now-ubiquitous smartphones can be used to detect ionising radiation in addition to visible light. Radiation incidents on a smartphone camera’s Complementary Metal Oxide Semiconductor (CMOS) sensor creates a signal which can be isolated from a visible light signal to turn the smartphone into a radiation detector. This work aims to report a detailed investigation of a well-reviewed smartphone application for radiation dosimetry that is available for popular smartphone devices under a calibration protocol that is typically used for the commercial calibration of radiation detectors. The iPhone 6s smartphone, which has a CMOS camera sensor, was used in this study. Black tape was utilized to block visible light. The Radioactivity counter app developed by Rolf-Dieter Klein and available on Apple’s App Store was installed on the device and tested using a calibrated radioactive source, calibration concrete pads with a range of known concentrations of radioactive elements, and in direct sunlight. The smartphone CMOS sensor is sensitive to radiation doses as low as 10 µGy/h, with a linear dose response and an angular dependence. The RadioactivityCounter app is limited in that it requires 4–10 min to offer a stable measurement. The precision of the measurement is also affected by heat and a smartphone’s battery level. Although the smartphone is not as accurate as a conventional detector, it is useful enough to detect radiation before the radiation reaches hazardous levels. It can also be used for personal dose assessments and as an alarm for the presence of high radiation levels. |
format |
article |
author |
Yehia H. Johary Jamie Trapp Ali Aamry Hussin Aamri N. Tamam A. Sulieman |
author_facet |
Yehia H. Johary Jamie Trapp Ali Aamry Hussin Aamri N. Tamam A. Sulieman |
author_sort |
Yehia H. Johary |
title |
The suitability of smartphone camera sensors for detecting radiation |
title_short |
The suitability of smartphone camera sensors for detecting radiation |
title_full |
The suitability of smartphone camera sensors for detecting radiation |
title_fullStr |
The suitability of smartphone camera sensors for detecting radiation |
title_full_unstemmed |
The suitability of smartphone camera sensors for detecting radiation |
title_sort |
suitability of smartphone camera sensors for detecting radiation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/df8dce665d35494e8955ad4c5858480c |
work_keys_str_mv |
AT yehiahjohary thesuitabilityofsmartphonecamerasensorsfordetectingradiation AT jamietrapp thesuitabilityofsmartphonecamerasensorsfordetectingradiation AT aliaamry thesuitabilityofsmartphonecamerasensorsfordetectingradiation AT hussinaamri thesuitabilityofsmartphonecamerasensorsfordetectingradiation AT ntamam thesuitabilityofsmartphonecamerasensorsfordetectingradiation AT asulieman thesuitabilityofsmartphonecamerasensorsfordetectingradiation AT yehiahjohary suitabilityofsmartphonecamerasensorsfordetectingradiation AT jamietrapp suitabilityofsmartphonecamerasensorsfordetectingradiation AT aliaamry suitabilityofsmartphonecamerasensorsfordetectingradiation AT hussinaamri suitabilityofsmartphonecamerasensorsfordetectingradiation AT ntamam suitabilityofsmartphonecamerasensorsfordetectingradiation AT asulieman suitabilityofsmartphonecamerasensorsfordetectingradiation |
_version_ |
1718379674754613248 |