Integrating multiple materials science projects in a single neural network

Traditionally, machine learning for materials science is based on database-specific models and is limited in the number of predictable parameters. Here, a versatile graph-based neural network can integrate multiple data sources, allowing the prediction of more than 40 parameters simultaneously.

Guardado en:
Detalles Bibliográficos
Autores principales: Kan Hatakeyama-Sato, Kenichi Oyaizu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/df9217b218ca4e14b7b2a461db83f7d6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:df9217b218ca4e14b7b2a461db83f7d6
record_format dspace
spelling oai:doaj.org-article:df9217b218ca4e14b7b2a461db83f7d62021-12-02T16:30:09ZIntegrating multiple materials science projects in a single neural network10.1038/s43246-020-00052-82662-4443https://doaj.org/article/df9217b218ca4e14b7b2a461db83f7d62020-07-01T00:00:00Zhttps://doi.org/10.1038/s43246-020-00052-8https://doaj.org/toc/2662-4443Traditionally, machine learning for materials science is based on database-specific models and is limited in the number of predictable parameters. Here, a versatile graph-based neural network can integrate multiple data sources, allowing the prediction of more than 40 parameters simultaneously.Kan Hatakeyama-SatoKenichi OyaizuNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 1, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Kan Hatakeyama-Sato
Kenichi Oyaizu
Integrating multiple materials science projects in a single neural network
description Traditionally, machine learning for materials science is based on database-specific models and is limited in the number of predictable parameters. Here, a versatile graph-based neural network can integrate multiple data sources, allowing the prediction of more than 40 parameters simultaneously.
format article
author Kan Hatakeyama-Sato
Kenichi Oyaizu
author_facet Kan Hatakeyama-Sato
Kenichi Oyaizu
author_sort Kan Hatakeyama-Sato
title Integrating multiple materials science projects in a single neural network
title_short Integrating multiple materials science projects in a single neural network
title_full Integrating multiple materials science projects in a single neural network
title_fullStr Integrating multiple materials science projects in a single neural network
title_full_unstemmed Integrating multiple materials science projects in a single neural network
title_sort integrating multiple materials science projects in a single neural network
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/df9217b218ca4e14b7b2a461db83f7d6
work_keys_str_mv AT kanhatakeyamasato integratingmultiplematerialsscienceprojectsinasingleneuralnetwork
AT kenichioyaizu integratingmultiplematerialsscienceprojectsinasingleneuralnetwork
_version_ 1718383964514680832