Integrating multiple materials science projects in a single neural network
Traditionally, machine learning for materials science is based on database-specific models and is limited in the number of predictable parameters. Here, a versatile graph-based neural network can integrate multiple data sources, allowing the prediction of more than 40 parameters simultaneously.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df9217b218ca4e14b7b2a461db83f7d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:df9217b218ca4e14b7b2a461db83f7d6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:df9217b218ca4e14b7b2a461db83f7d62021-12-02T16:30:09ZIntegrating multiple materials science projects in a single neural network10.1038/s43246-020-00052-82662-4443https://doaj.org/article/df9217b218ca4e14b7b2a461db83f7d62020-07-01T00:00:00Zhttps://doi.org/10.1038/s43246-020-00052-8https://doaj.org/toc/2662-4443Traditionally, machine learning for materials science is based on database-specific models and is limited in the number of predictable parameters. Here, a versatile graph-based neural network can integrate multiple data sources, allowing the prediction of more than 40 parameters simultaneously.Kan Hatakeyama-SatoKenichi OyaizuNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENCommunications Materials, Vol 1, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Kan Hatakeyama-Sato Kenichi Oyaizu Integrating multiple materials science projects in a single neural network |
description |
Traditionally, machine learning for materials science is based on database-specific models and is limited in the number of predictable parameters. Here, a versatile graph-based neural network can integrate multiple data sources, allowing the prediction of more than 40 parameters simultaneously. |
format |
article |
author |
Kan Hatakeyama-Sato Kenichi Oyaizu |
author_facet |
Kan Hatakeyama-Sato Kenichi Oyaizu |
author_sort |
Kan Hatakeyama-Sato |
title |
Integrating multiple materials science projects in a single neural network |
title_short |
Integrating multiple materials science projects in a single neural network |
title_full |
Integrating multiple materials science projects in a single neural network |
title_fullStr |
Integrating multiple materials science projects in a single neural network |
title_full_unstemmed |
Integrating multiple materials science projects in a single neural network |
title_sort |
integrating multiple materials science projects in a single neural network |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/df9217b218ca4e14b7b2a461db83f7d6 |
work_keys_str_mv |
AT kanhatakeyamasato integratingmultiplematerialsscienceprojectsinasingleneuralnetwork AT kenichioyaizu integratingmultiplematerialsscienceprojectsinasingleneuralnetwork |
_version_ |
1718383964514680832 |