Integrating multiple materials science projects in a single neural network

Traditionally, machine learning for materials science is based on database-specific models and is limited in the number of predictable parameters. Here, a versatile graph-based neural network can integrate multiple data sources, allowing the prediction of more than 40 parameters simultaneously.

Guardado en:
Detalles Bibliográficos
Autores principales: Kan Hatakeyama-Sato, Kenichi Oyaizu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/df9217b218ca4e14b7b2a461db83f7d6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares