Integrating multiple materials science projects in a single neural network
Traditionally, machine learning for materials science is based on database-specific models and is limited in the number of predictable parameters. Here, a versatile graph-based neural network can integrate multiple data sources, allowing the prediction of more than 40 parameters simultaneously.
Guardado en:
Autores principales: | Kan Hatakeyama-Sato, Kenichi Oyaizu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df9217b218ca4e14b7b2a461db83f7d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A geometric-information-enhanced crystal graph network for predicting properties of materials
por: Jiucheng Cheng, et al.
Publicado: (2021) -
Benchmarking graph neural networks for materials chemistry
por: Victor Fung, et al.
Publicado: (2021) -
Stretchable micro-scale concentrator photovoltaic module with 15.4% efficiency for three-dimensional curved surfaces
por: Daisuke Sato, et al.
Publicado: (2021) -
WastePD, an innovative center on materials degradation
por: Gerald S. Frankel, et al.
Publicado: (2017) -
Microscopic relaxation channels in materials for superconducting qubits
por: Anjali Premkumar, et al.
Publicado: (2021)