Degradation of Mechanical Behavior of Sandstone under Freeze-Thaw Conditions with Different Low Temperatures
This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequent...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df9d83efc82e4c039230dcbfa067d688 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:df9d83efc82e4c039230dcbfa067d688 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:df9d83efc82e4c039230dcbfa067d6882021-11-25T16:34:23ZDegradation of Mechanical Behavior of Sandstone under Freeze-Thaw Conditions with Different Low Temperatures10.3390/app1122106532076-3417https://doaj.org/article/df9d83efc82e4c039230dcbfa067d6882021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/22/10653https://doaj.org/toc/2076-3417This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption.Jingwei GaoChao XuYan XiLifeng FanMDPI AGarticlefreezing temperaturefreeze-thaw cyclesmechanical behaviorsandstoneTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 10653, p 10653 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
freezing temperature freeze-thaw cycles mechanical behavior sandstone Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
freezing temperature freeze-thaw cycles mechanical behavior sandstone Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Jingwei Gao Chao Xu Yan Xi Lifeng Fan Degradation of Mechanical Behavior of Sandstone under Freeze-Thaw Conditions with Different Low Temperatures |
description |
This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption. |
format |
article |
author |
Jingwei Gao Chao Xu Yan Xi Lifeng Fan |
author_facet |
Jingwei Gao Chao Xu Yan Xi Lifeng Fan |
author_sort |
Jingwei Gao |
title |
Degradation of Mechanical Behavior of Sandstone under Freeze-Thaw Conditions with Different Low Temperatures |
title_short |
Degradation of Mechanical Behavior of Sandstone under Freeze-Thaw Conditions with Different Low Temperatures |
title_full |
Degradation of Mechanical Behavior of Sandstone under Freeze-Thaw Conditions with Different Low Temperatures |
title_fullStr |
Degradation of Mechanical Behavior of Sandstone under Freeze-Thaw Conditions with Different Low Temperatures |
title_full_unstemmed |
Degradation of Mechanical Behavior of Sandstone under Freeze-Thaw Conditions with Different Low Temperatures |
title_sort |
degradation of mechanical behavior of sandstone under freeze-thaw conditions with different low temperatures |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/df9d83efc82e4c039230dcbfa067d688 |
work_keys_str_mv |
AT jingweigao degradationofmechanicalbehaviorofsandstoneunderfreezethawconditionswithdifferentlowtemperatures AT chaoxu degradationofmechanicalbehaviorofsandstoneunderfreezethawconditionswithdifferentlowtemperatures AT yanxi degradationofmechanicalbehaviorofsandstoneunderfreezethawconditionswithdifferentlowtemperatures AT lifengfan degradationofmechanicalbehaviorofsandstoneunderfreezethawconditionswithdifferentlowtemperatures |
_version_ |
1718413108077133824 |