Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm
Abstract Genome-wide association studies (GWAS) with longitudinal phenotypes provide opportunities to identify genetic variations associated with changes in human traits over time. Mixed models are used to correct for the correlated nature of longitudinal data. GWA studies are notorious for their co...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dfa5b2fb1569404aba5d6649c5e52604 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dfa5b2fb1569404aba5d6649c5e52604 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dfa5b2fb1569404aba5d6649c5e526042021-12-02T11:41:15ZGenome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm10.1038/s41598-018-24578-72045-2322https://doaj.org/article/dfa5b2fb1569404aba5d6649c5e526042018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-24578-7https://doaj.org/toc/2045-2322Abstract Genome-wide association studies (GWAS) with longitudinal phenotypes provide opportunities to identify genetic variations associated with changes in human traits over time. Mixed models are used to correct for the correlated nature of longitudinal data. GWA studies are notorious for their computational challenges, which are considerable when mixed models for thousands of individuals are fitted to millions of SNPs. We present a new algorithm that speeds up a genome-wide analysis of longitudinal data by several orders of magnitude. It solves the equivalent penalized least squares problem efficiently, computing variances in an initial step. Factorizations and transformations are used to avoid inversion of large matrices. Because the system of equations is bordered, we can re-use components, which can be precomputed for the mixed model without a SNP. Two SNP effects (main and its interaction with time) are obtained. Our method completes the analysis a thousand times faster than the R package lme4, providing an almost identical solution for the coefficients and p-values. We provide an R implementation of our algorithm.Karolina SikorskaEmmanuel LesaffrePatrick J. F. GroenenFernando RivadeneiraPaul H. C. EilersNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-8 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Karolina Sikorska Emmanuel Lesaffre Patrick J. F. Groenen Fernando Rivadeneira Paul H. C. Eilers Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm |
description |
Abstract Genome-wide association studies (GWAS) with longitudinal phenotypes provide opportunities to identify genetic variations associated with changes in human traits over time. Mixed models are used to correct for the correlated nature of longitudinal data. GWA studies are notorious for their computational challenges, which are considerable when mixed models for thousands of individuals are fitted to millions of SNPs. We present a new algorithm that speeds up a genome-wide analysis of longitudinal data by several orders of magnitude. It solves the equivalent penalized least squares problem efficiently, computing variances in an initial step. Factorizations and transformations are used to avoid inversion of large matrices. Because the system of equations is bordered, we can re-use components, which can be precomputed for the mixed model without a SNP. Two SNP effects (main and its interaction with time) are obtained. Our method completes the analysis a thousand times faster than the R package lme4, providing an almost identical solution for the coefficients and p-values. We provide an R implementation of our algorithm. |
format |
article |
author |
Karolina Sikorska Emmanuel Lesaffre Patrick J. F. Groenen Fernando Rivadeneira Paul H. C. Eilers |
author_facet |
Karolina Sikorska Emmanuel Lesaffre Patrick J. F. Groenen Fernando Rivadeneira Paul H. C. Eilers |
author_sort |
Karolina Sikorska |
title |
Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm |
title_short |
Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm |
title_full |
Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm |
title_fullStr |
Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm |
title_full_unstemmed |
Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm |
title_sort |
genome-wide analysis of large-scale longitudinal outcomes using penalization —gallop algorithm |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/dfa5b2fb1569404aba5d6649c5e52604 |
work_keys_str_mv |
AT karolinasikorska genomewideanalysisoflargescalelongitudinaloutcomesusingpenalizationgallopalgorithm AT emmanuellesaffre genomewideanalysisoflargescalelongitudinaloutcomesusingpenalizationgallopalgorithm AT patrickjfgroenen genomewideanalysisoflargescalelongitudinaloutcomesusingpenalizationgallopalgorithm AT fernandorivadeneira genomewideanalysisoflargescalelongitudinaloutcomesusingpenalizationgallopalgorithm AT paulhceilers genomewideanalysisoflargescalelongitudinaloutcomesusingpenalizationgallopalgorithm |
_version_ |
1718395432276590592 |