Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization —GALLOP algorithm
Abstract Genome-wide association studies (GWAS) with longitudinal phenotypes provide opportunities to identify genetic variations associated with changes in human traits over time. Mixed models are used to correct for the correlated nature of longitudinal data. GWA studies are notorious for their co...
Enregistré dans:
Auteurs principaux: | Karolina Sikorska, Emmanuel Lesaffre, Patrick J. F. Groenen, Fernando Rivadeneira, Paul H. C. Eilers |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dfa5b2fb1569404aba5d6649c5e52604 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The effect of horseshoes and surfaces on horse and jockey centre of mass displacements at gallop.
par: Kate Horan, et autres
Publié: (2021) -
Fast principal component analysis of large-scale genome-wide data.
par: Gad Abraham, et autres
Publié: (2014) -
A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping
par: Dai Owaki, et autres
Publié: (2017) -
Study on Adaptive Excitation System of Transmission Line Galloping Based on Electromagnetic Repulsive Mechanism
par: Jiangjun Ruan, et autres
Publié: (2021) -
Genome-wide identification of directed gene networks using large-scale population genomics data
par: René Luijk, et autres
Publié: (2018)