Generation, characterization, and manipulation of quantum correlations in electron beams
Abstract Entanglement engineering plays a central role in quantum-enhanced technologies, with potential physical platforms that outperform their classical counterparts. However, free electrons remain largely unexplored despite their great capacity to encode and manipulate quantum information, due in...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dfa79fed358944eda1c92ae21dacea4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dfa79fed358944eda1c92ae21dacea4e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dfa79fed358944eda1c92ae21dacea4e2021-12-02T13:34:34ZGeneration, characterization, and manipulation of quantum correlations in electron beams10.1038/s41534-021-00376-42056-6387https://doaj.org/article/dfa79fed358944eda1c92ae21dacea4e2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00376-4https://doaj.org/toc/2056-6387Abstract Entanglement engineering plays a central role in quantum-enhanced technologies, with potential physical platforms that outperform their classical counterparts. However, free electrons remain largely unexplored despite their great capacity to encode and manipulate quantum information, due in part to the lack of a suitable theoretical framework. Here we link theoretical concepts from quantum information to available free-electron sources. Specifically, we consider the interactions among electrons propagating near the surface of a polariton-supporting medium and study the entanglement induced by pair-wise coupling. These correlations depend on the controlled interaction interval and the initial electron bandwidth. We show that long interaction times of broadband electrons extend their temporal coherence. This in turn is revealed through a widened Hong–Ou–Mandel peak and is associated with an increased entanglement entropy. We then introduce a discrete basis of electronic temporal modes and discriminate between them via coincidence detection with a shaped probe. This paves the way for ultrafast quantum information transfer by means of free electrons, rendering the large alphabet that they span in the time domain accessible.Shahaf AsbanF. Javier García de AbajoNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-6 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
Physics QC1-999 Electronic computers. Computer science QA75.5-76.95 Shahaf Asban F. Javier García de Abajo Generation, characterization, and manipulation of quantum correlations in electron beams |
description |
Abstract Entanglement engineering plays a central role in quantum-enhanced technologies, with potential physical platforms that outperform their classical counterparts. However, free electrons remain largely unexplored despite their great capacity to encode and manipulate quantum information, due in part to the lack of a suitable theoretical framework. Here we link theoretical concepts from quantum information to available free-electron sources. Specifically, we consider the interactions among electrons propagating near the surface of a polariton-supporting medium and study the entanglement induced by pair-wise coupling. These correlations depend on the controlled interaction interval and the initial electron bandwidth. We show that long interaction times of broadband electrons extend their temporal coherence. This in turn is revealed through a widened Hong–Ou–Mandel peak and is associated with an increased entanglement entropy. We then introduce a discrete basis of electronic temporal modes and discriminate between them via coincidence detection with a shaped probe. This paves the way for ultrafast quantum information transfer by means of free electrons, rendering the large alphabet that they span in the time domain accessible. |
format |
article |
author |
Shahaf Asban F. Javier García de Abajo |
author_facet |
Shahaf Asban F. Javier García de Abajo |
author_sort |
Shahaf Asban |
title |
Generation, characterization, and manipulation of quantum correlations in electron beams |
title_short |
Generation, characterization, and manipulation of quantum correlations in electron beams |
title_full |
Generation, characterization, and manipulation of quantum correlations in electron beams |
title_fullStr |
Generation, characterization, and manipulation of quantum correlations in electron beams |
title_full_unstemmed |
Generation, characterization, and manipulation of quantum correlations in electron beams |
title_sort |
generation, characterization, and manipulation of quantum correlations in electron beams |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/dfa79fed358944eda1c92ae21dacea4e |
work_keys_str_mv |
AT shahafasban generationcharacterizationandmanipulationofquantumcorrelationsinelectronbeams AT fjaviergarciadeabajo generationcharacterizationandmanipulationofquantumcorrelationsinelectronbeams |
_version_ |
1718392765095608320 |