Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches
Real-time disease surveillance can aid mitigation of outbreaks. Here, Lu et al. combine an approach using Google search and EHR data with an approach leveraging spatiotemporal synchronicities of influenza activity across states to improve state-level influenza activity estimates in the US.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dfa7fe1d780d44dfa64fb947bad72f64 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dfa7fe1d780d44dfa64fb947bad72f64 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dfa7fe1d780d44dfa64fb947bad72f642021-12-02T17:01:32ZImproved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches10.1038/s41467-018-08082-02041-1723https://doaj.org/article/dfa7fe1d780d44dfa64fb947bad72f642019-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-08082-0https://doaj.org/toc/2041-1723Real-time disease surveillance can aid mitigation of outbreaks. Here, Lu et al. combine an approach using Google search and EHR data with an approach leveraging spatiotemporal synchronicities of influenza activity across states to improve state-level influenza activity estimates in the US.Fred S. LuMohammad W. HattabCesar Leonardo ClementeMatthew BiggerstaffMauricio SantillanaNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Fred S. Lu Mohammad W. Hattab Cesar Leonardo Clemente Matthew Biggerstaff Mauricio Santillana Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches |
description |
Real-time disease surveillance can aid mitigation of outbreaks. Here, Lu et al. combine an approach using Google search and EHR data with an approach leveraging spatiotemporal synchronicities of influenza activity across states to improve state-level influenza activity estimates in the US. |
format |
article |
author |
Fred S. Lu Mohammad W. Hattab Cesar Leonardo Clemente Matthew Biggerstaff Mauricio Santillana |
author_facet |
Fred S. Lu Mohammad W. Hattab Cesar Leonardo Clemente Matthew Biggerstaff Mauricio Santillana |
author_sort |
Fred S. Lu |
title |
Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches |
title_short |
Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches |
title_full |
Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches |
title_fullStr |
Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches |
title_full_unstemmed |
Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches |
title_sort |
improved state-level influenza nowcasting in the united states leveraging internet-based data and network approaches |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/dfa7fe1d780d44dfa64fb947bad72f64 |
work_keys_str_mv |
AT fredslu improvedstatelevelinfluenzanowcastingintheunitedstatesleveraginginternetbaseddataandnetworkapproaches AT mohammadwhattab improvedstatelevelinfluenzanowcastingintheunitedstatesleveraginginternetbaseddataandnetworkapproaches AT cesarleonardoclemente improvedstatelevelinfluenzanowcastingintheunitedstatesleveraginginternetbaseddataandnetworkapproaches AT matthewbiggerstaff improvedstatelevelinfluenzanowcastingintheunitedstatesleveraginginternetbaseddataandnetworkapproaches AT mauriciosantillana improvedstatelevelinfluenzanowcastingintheunitedstatesleveraginginternetbaseddataandnetworkapproaches |
_version_ |
1718382117914673152 |