Fast Drivable Areas Estimation with Multi-Task Learning for Real-Time Autonomous Driving Assistant
Autonomous driving is a safety-critical application that requires a high-level understanding of computer vision with real-time inference. In this study, we focus on the computational efficiency of an important factor by improving the running time and performing multiple tasks simultaneously for prac...
Guardado en:
Autor principal: | Dong-Gyu Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dfa92dd84db34a83bf1cc1767ef068fb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-Time Lane Line Tracking Algorithm to Mini Vehicles
por: Suto Jozsef
Publicado: (2021) -
A Decision Control Method for Autonomous Driving Based on Multi-Task Reinforcement Learning
por: Yingfeng Cai, et al.
Publicado: (2021) -
Towards the Unified Principles for Level 5 Autonomous Vehicles
por: Jianqiang Wang, et al.
Publicado: (2021) -
Autonomous Driving Control Using the DDPG and RDPG Algorithms
por: Che-Cheng Chang, et al.
Publicado: (2021) -
A probabilistic approach to driver assistance for delay reduction at congested highway lane drops
por: Goodarz Mehr, et al.
Publicado: (2021)