Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.

The aim of the study was to use a previously proposed mask region-based convolutional neural network (Mask R-CNN) for automatic abnormal liver density detection and segmentation based on hepatocellular carcinoma (HCC) computed tomography (CT) datasets from a radiological perspective. Training and te...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ching-Juei Yang, Chien-Kuo Wang, Yu-Hua Dean Fang, Jing-Yao Wang, Fong-Chin Su, Hong-Ming Tsai, Yih-Jyh Lin, Hung-Wen Tsai, Lee-Ren Yeh
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dfaeedd751594b4385b21073abf16088
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dfaeedd751594b4385b21073abf16088
record_format dspace
spelling oai:doaj.org-article:dfaeedd751594b4385b21073abf160882021-12-02T20:18:26ZClinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.1932-620310.1371/journal.pone.0255605https://doaj.org/article/dfaeedd751594b4385b21073abf160882021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0255605https://doaj.org/toc/1932-6203The aim of the study was to use a previously proposed mask region-based convolutional neural network (Mask R-CNN) for automatic abnormal liver density detection and segmentation based on hepatocellular carcinoma (HCC) computed tomography (CT) datasets from a radiological perspective. Training and testing datasets were acquired retrospectively from two hospitals of Taiwan. The training dataset contained 10,130 images of liver tumor densities of 11,258 regions of interest (ROIs). The positive testing dataset contained 1,833 images of liver tumor densities with 1,874 ROIs, and negative testing data comprised 20,283 images without abnormal densities in liver parenchyma. The Mask R-CNN was used to generate a medical model, and areas under the curve, true positive rates, false positive rates, and Dice coefficients were evaluated. For abnormal liver CT density detection, in each image, we identified the mean area under the curve, true positive rate, and false positive rate, which were 0.9490, 91.99%, and 13.68%, respectively. For segmentation ability, the highest mean Dice coefficient obtained was 0.8041. This study trained a Mask R-CNN on various HCC images to construct a medical model that serves as an auxiliary tool for alerting radiologists to abnormal CT density in liver scans; this model can simultaneously detect liver lesions and perform automatic instance segmentation.Ching-Juei YangChien-Kuo WangYu-Hua Dean FangJing-Yao WangFong-Chin SuHong-Ming TsaiYih-Jyh LinHung-Wen TsaiLee-Ren YehPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0255605 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ching-Juei Yang
Chien-Kuo Wang
Yu-Hua Dean Fang
Jing-Yao Wang
Fong-Chin Su
Hong-Ming Tsai
Yih-Jyh Lin
Hung-Wen Tsai
Lee-Ren Yeh
Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.
description The aim of the study was to use a previously proposed mask region-based convolutional neural network (Mask R-CNN) for automatic abnormal liver density detection and segmentation based on hepatocellular carcinoma (HCC) computed tomography (CT) datasets from a radiological perspective. Training and testing datasets were acquired retrospectively from two hospitals of Taiwan. The training dataset contained 10,130 images of liver tumor densities of 11,258 regions of interest (ROIs). The positive testing dataset contained 1,833 images of liver tumor densities with 1,874 ROIs, and negative testing data comprised 20,283 images without abnormal densities in liver parenchyma. The Mask R-CNN was used to generate a medical model, and areas under the curve, true positive rates, false positive rates, and Dice coefficients were evaluated. For abnormal liver CT density detection, in each image, we identified the mean area under the curve, true positive rate, and false positive rate, which were 0.9490, 91.99%, and 13.68%, respectively. For segmentation ability, the highest mean Dice coefficient obtained was 0.8041. This study trained a Mask R-CNN on various HCC images to construct a medical model that serves as an auxiliary tool for alerting radiologists to abnormal CT density in liver scans; this model can simultaneously detect liver lesions and perform automatic instance segmentation.
format article
author Ching-Juei Yang
Chien-Kuo Wang
Yu-Hua Dean Fang
Jing-Yao Wang
Fong-Chin Su
Hong-Ming Tsai
Yih-Jyh Lin
Hung-Wen Tsai
Lee-Ren Yeh
author_facet Ching-Juei Yang
Chien-Kuo Wang
Yu-Hua Dean Fang
Jing-Yao Wang
Fong-Chin Su
Hong-Ming Tsai
Yih-Jyh Lin
Hung-Wen Tsai
Lee-Ren Yeh
author_sort Ching-Juei Yang
title Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.
title_short Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.
title_full Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.
title_fullStr Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.
title_full_unstemmed Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.
title_sort clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasets.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/dfaeedd751594b4385b21073abf16088
work_keys_str_mv AT chingjueiyang clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
AT chienkuowang clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
AT yuhuadeanfang clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
AT jingyaowang clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
AT fongchinsu clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
AT hongmingtsai clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
AT yihjyhlin clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
AT hungwentsai clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
AT leerenyeh clinicalapplicationofmaskregionbasedconvolutionalneuralnetworkfortheautomaticdetectionandsegmentationofabnormalliverdensitybasedonhepatocellularcarcinomacomputedtomographydatasets
_version_ 1718374317646938112