Epidemiology of acute respiratory infections in children in Guangzhou: a three-year study.

Acute Respiratory Infections (ARI) are some of the most common human diseases worldwide. However, they have a complex and diverse etiology, and the characteristics of the pathogens involved in respiratory infections in developing countries are not well understood. In this work, we analyzed the chara...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wen Kuan Liu, Qian Liu, De Hui Chen, Huan Xi Liang, Xiao Kai Chen, Mei Xin Chen, Shu Yan Qiu, Zi Yeng Yang, Rong Zhou
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dfaf85999b1d48138cf1ba8ffeebeb6d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Acute Respiratory Infections (ARI) are some of the most common human diseases worldwide. However, they have a complex and diverse etiology, and the characteristics of the pathogens involved in respiratory infections in developing countries are not well understood. In this work, we analyzed the characteristics of 17 common respiratory pathogens in children (≤14 years old) with ARI in Guangzhou, southern China over a 3-year period using real-time polymerase chain reaction. Pathogens were identified in 2361/4242 (55.7%) patients, and the positivity rate varied seasonally. Ten of the 17 pathogens investigated showed positivity rates of more than 5%. The most frequently detected pathogens were respiratory syncytial virus (768/2361, 32.5%), influenza A virus (428/2361, 18.1%), enterovirus (138/2361, 13.3%), Mycoplasma pneumoniae (267/2361, 11.3%) and adenovirus (213/2361, 9.0%). Co-pathogens were common and found in 503 of 2361 (21.3%) positive samples. When ranked according to frequency of occurrence, the pattern of co-pathogens was similar to that of the primary pathogens, with the exception of human bocavirus, human coronavirus and human metapneumovirus. Significant differences were found in age prevalence in 10 of the 17 pathogens (p≤0.009): four basic patterns were observed, A: detection rates increased with age, B: detection rates declined with age, C: the detection rate showed distinct peaks or D: numbers of patients were too low to detect a trend or showed no significant difference among age groups (p>0.05). These data will be useful for planning vaccine research and control strategies and for studies predicting pathogen prevalence.