A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2
Gaina Xi,1 Xiaoping Wang,2 Tongsheng Chen1 1MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, 2Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China Abstract: A nove...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dfc485b5f8cf4d488e7ee24682dad70d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dfc485b5f8cf4d488e7ee24682dad70d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dfc485b5f8cf4d488e7ee24682dad70d2021-12-02T00:38:49ZA reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 21178-2013https://doaj.org/article/dfc485b5f8cf4d488e7ee24682dad70d2016-04-01T00:00:00Zhttps://www.dovepress.com/a-reduced-graphene-oxide-based-fluorescence-resonance-energy-transfer--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Gaina Xi,1 Xiaoping Wang,2 Tongsheng Chen1 1MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, 2Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China Abstract: A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. Keywords: graphene oxide, reduction, high sensitive detection, fluorescenceXi GWang XChen TDove Medical PressarticleGraphene oxideReductionMMP2 detectionFRETMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2016, Iss default, Pp 1537-1547 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Graphene oxide Reduction MMP2 detection FRET Medicine (General) R5-920 |
spellingShingle |
Graphene oxide Reduction MMP2 detection FRET Medicine (General) R5-920 Xi G Wang X Chen T A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2 |
description |
Gaina Xi,1 Xiaoping Wang,2 Tongsheng Chen1 1MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, 2Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China Abstract: A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. Keywords: graphene oxide, reduction, high sensitive detection, fluorescence |
format |
article |
author |
Xi G Wang X Chen T |
author_facet |
Xi G Wang X Chen T |
author_sort |
Xi G |
title |
A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2 |
title_short |
A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2 |
title_full |
A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2 |
title_fullStr |
A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2 |
title_full_unstemmed |
A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2 |
title_sort |
reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2 |
publisher |
Dove Medical Press |
publishDate |
2016 |
url |
https://doaj.org/article/dfc485b5f8cf4d488e7ee24682dad70d |
work_keys_str_mv |
AT xig areducedgrapheneoxidebasedfluorescenceresonanceenergytransfersensorforhighlysensitivedetectionofmatrixmetalloproteinase2 AT wangx areducedgrapheneoxidebasedfluorescenceresonanceenergytransfersensorforhighlysensitivedetectionofmatrixmetalloproteinase2 AT chent areducedgrapheneoxidebasedfluorescenceresonanceenergytransfersensorforhighlysensitivedetectionofmatrixmetalloproteinase2 AT xig reducedgrapheneoxidebasedfluorescenceresonanceenergytransfersensorforhighlysensitivedetectionofmatrixmetalloproteinase2 AT wangx reducedgrapheneoxidebasedfluorescenceresonanceenergytransfersensorforhighlysensitivedetectionofmatrixmetalloproteinase2 AT chent reducedgrapheneoxidebasedfluorescenceresonanceenergytransfersensorforhighlysensitivedetectionofmatrixmetalloproteinase2 |
_version_ |
1718403588498128896 |