Robust squeezed light against mode mismatch using a self imaging optical parametric oscillator
Abstract We present squeezed light that is robust against spatial mode mismatch (beam displacement, tilt, and beam-size difference), which is generated from a self-imaging optical parametric oscillator below the threshold. We investigate the quantum properties of the generated light when the oscilla...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dfc732a50c604d369064b8519ae08c12 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We present squeezed light that is robust against spatial mode mismatch (beam displacement, tilt, and beam-size difference), which is generated from a self-imaging optical parametric oscillator below the threshold. We investigate the quantum properties of the generated light when the oscillator is detuned from the ideal self-imaging condition for stable operation. We find that the generated light is more robust to mode mismatch than single-mode squeezed light having the same squeezing level, and it even outperforms the single-mode infinitely squeezed light as the strength of mode mismatch increases. |
---|