Unsupervised generative and graph representation learning for modelling cell differentiation
Abstract Using machine learning techniques to build representations from biomedical data can help us understand the latent biological mechanism of action and lead to important discoveries. Recent developments in single-cell RNA-sequencing protocols have allowed measuring gene expression for individu...
Guardado en:
Autores principales: | Ioana Bica, Helena Andrés-Terré, Ana Cvejic, Pietro Liò |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dfe3326beb63483f91402dc5465d9cf2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Shicheng Li, et al.
Publicado: (2021) -
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
por: Tian Xie, et al.
Publicado: (2019) -
Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis
por: Emmanouil I. Athanasiadis, et al.
Publicado: (2017) -
Unsupervised cross-lingual model transfer for named entity recognition with contextualized word representations.
por: Huijiong Yan, et al.
Publicado: (2021) -
FlavorGraph: a large-scale food-chemical graph for generating food representations and recommending food pairings
por: Donghyeon Park, et al.
Publicado: (2021)