Unsupervised generative and graph representation learning for modelling cell differentiation

Abstract Using machine learning techniques to build representations from biomedical data can help us understand the latent biological mechanism of action and lead to important discoveries. Recent developments in single-cell RNA-sequencing protocols have allowed measuring gene expression for individu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ioana Bica, Helena Andrés-Terré, Ana Cvejic, Pietro Liò
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dfe3326beb63483f91402dc5465d9cf2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares