Mapping, bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa.
There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in co...
Guardado en:
Autores principales: | Hannah Slater, Edwin Michael |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e006cdac17c940879c1aacd10303e980 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling.
por: Hannah Slater, et al.
Publicado: (2012) -
Supporting elimination of lymphatic filariasis in Samoa by predicting locations of residual infection using machine learning and geostatistics
por: Helen J. Mayfield, et al.
Publicado: (2020) -
Secondary mapping of lymphatic filariasis in Haiti-definition of transmission foci in low-prevalence settings.
por: Naomi Drexler, et al.
Publicado: (2012) -
Global elimination of lymphatic filariasis: a "mass uprising of compassion".
por: David G Addiss
Publicado: (2013) -
The wider societal benefits of surgical interventions for lymphatic filariasis morbidity management and disability prevention.
por: Sarah Martindale, et al.
Publicado: (2021)