Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet
Abstract Many of genes mediating Known Drug-Disease Association (KDDA) are escaped from experimental detection. Identifying of these genes (hidden genes) is of great significance for understanding disease pathogenesis and guiding drug repurposing. Here, we presented a novel computational tool, calle...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e014127581934eada7759bad1f929a14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e014127581934eada7759bad1f929a14 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e014127581934eada7759bad1f929a142021-12-02T17:41:29ZGenome-wide discovery of hidden genes mediating known drug-disease association using KDDANet10.1038/s41525-021-00216-62056-7944https://doaj.org/article/e014127581934eada7759bad1f929a142021-06-01T00:00:00Zhttps://doi.org/10.1038/s41525-021-00216-6https://doaj.org/toc/2056-7944Abstract Many of genes mediating Known Drug-Disease Association (KDDA) are escaped from experimental detection. Identifying of these genes (hidden genes) is of great significance for understanding disease pathogenesis and guiding drug repurposing. Here, we presented a novel computational tool, called KDDANet, for systematic and accurate uncovering the hidden genes mediating KDDA from the perspective of genome-wide functional gene interaction network. KDDANet demonstrated the competitive performances in both sensitivity and specificity of identifying genes in mediating KDDA in comparison to the existing state-of-the-art methods. Case studies on Alzheimer’s disease (AD) and obesity uncovered the mechanistic relevance of KDDANet predictions. Furthermore, when applied with multiple types of cancer-omics datasets, KDDANet not only recapitulated known genes mediating KDDAs related to cancer, but also revealed novel candidates that offer new biological insights. Importantly, KDDANet can be used to discover the shared genes mediating multiple KDDAs. KDDANet can be accessed at http://www.kddanet.cn and the code can be freely downloaded at https://github.com/huayu1111/KDDANet .Hua YuLu LuMing ChenChen LiJin ZhangNature PortfolioarticleMedicineRGeneticsQH426-470ENnpj Genomic Medicine, Vol 6, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Genetics QH426-470 |
spellingShingle |
Medicine R Genetics QH426-470 Hua Yu Lu Lu Ming Chen Chen Li Jin Zhang Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet |
description |
Abstract Many of genes mediating Known Drug-Disease Association (KDDA) are escaped from experimental detection. Identifying of these genes (hidden genes) is of great significance for understanding disease pathogenesis and guiding drug repurposing. Here, we presented a novel computational tool, called KDDANet, for systematic and accurate uncovering the hidden genes mediating KDDA from the perspective of genome-wide functional gene interaction network. KDDANet demonstrated the competitive performances in both sensitivity and specificity of identifying genes in mediating KDDA in comparison to the existing state-of-the-art methods. Case studies on Alzheimer’s disease (AD) and obesity uncovered the mechanistic relevance of KDDANet predictions. Furthermore, when applied with multiple types of cancer-omics datasets, KDDANet not only recapitulated known genes mediating KDDAs related to cancer, but also revealed novel candidates that offer new biological insights. Importantly, KDDANet can be used to discover the shared genes mediating multiple KDDAs. KDDANet can be accessed at http://www.kddanet.cn and the code can be freely downloaded at https://github.com/huayu1111/KDDANet . |
format |
article |
author |
Hua Yu Lu Lu Ming Chen Chen Li Jin Zhang |
author_facet |
Hua Yu Lu Lu Ming Chen Chen Li Jin Zhang |
author_sort |
Hua Yu |
title |
Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet |
title_short |
Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet |
title_full |
Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet |
title_fullStr |
Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet |
title_full_unstemmed |
Genome-wide discovery of hidden genes mediating known drug-disease association using KDDANet |
title_sort |
genome-wide discovery of hidden genes mediating known drug-disease association using kddanet |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e014127581934eada7759bad1f929a14 |
work_keys_str_mv |
AT huayu genomewidediscoveryofhiddengenesmediatingknowndrugdiseaseassociationusingkddanet AT lulu genomewidediscoveryofhiddengenesmediatingknowndrugdiseaseassociationusingkddanet AT mingchen genomewidediscoveryofhiddengenesmediatingknowndrugdiseaseassociationusingkddanet AT chenli genomewidediscoveryofhiddengenesmediatingknowndrugdiseaseassociationusingkddanet AT jinzhang genomewidediscoveryofhiddengenesmediatingknowndrugdiseaseassociationusingkddanet |
_version_ |
1718379675386904576 |