Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics
Abstract Background Many studies in radiomics are using feature selection methods to identify the most predictive features. At the same time, they employ cross-validation to estimate the performance of the developed models. However, if the feature selection is performed before the cross-validation,...
Enregistré dans:
Auteur principal: | Aydin Demircioğlu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e05fc95b049c4fdc8f28b17d1566ac18 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Reply to Letter to the Editor on “Not all biases are bad: equitable and inequitable biases in machine learning and radiology”
par: Mirjam Pot, et autres
Publié: (2021) -
A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features
par: Elisabeth Pfaehler, et autres
Publié: (2021) -
Magnetic resonance imaging-based radiomics signature for preoperative prediction of Ki67 expression in bladder cancer
par: Zongtai Zheng, et autres
Publié: (2021) -
Development of a Standardized Semantic Feature-Based Reporting
Proforma for Intraoperative Ultrasound Findings in Brain Tumors and Application
in High-Grade Gliomas – A Preliminary Study
par: Prakash Shetty, et autres
Publié: (2021) -
Incorporating Robustness to Imaging Physics into Radiomic Feature Selection for Breast Cancer Risk Estimation
par: Raymond J. Acciavatti, et autres
Publié: (2021)