Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e06e0f558da248d395eeb5256e515254 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e06e0f558da248d395eeb5256e515254 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e06e0f558da248d395eeb5256e5152542021-12-02T14:41:28ZUncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus10.1038/s41467-018-03812-w2041-1723https://doaj.org/article/e06e0f558da248d395eeb5256e5152542018-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03812-whttps://doaj.org/toc/2041-1723Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered.Khadar AbdiChun-Hsiang LaiPatricia Paez-GonzalezMark LayJoon PyunChay T. KuoNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-16 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Khadar Abdi Chun-Hsiang Lai Patricia Paez-Gonzalez Mark Lay Joon Pyun Chay T. Kuo Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus |
description |
Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered. |
format |
article |
author |
Khadar Abdi Chun-Hsiang Lai Patricia Paez-Gonzalez Mark Lay Joon Pyun Chay T. Kuo |
author_facet |
Khadar Abdi Chun-Hsiang Lai Patricia Paez-Gonzalez Mark Lay Joon Pyun Chay T. Kuo |
author_sort |
Khadar Abdi |
title |
Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus |
title_short |
Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus |
title_full |
Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus |
title_fullStr |
Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus |
title_full_unstemmed |
Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus |
title_sort |
uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/e06e0f558da248d395eeb5256e515254 |
work_keys_str_mv |
AT khadarabdi uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus AT chunhsianglai uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus AT patriciapaezgonzalez uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus AT marklay uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus AT joonpyun uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus AT chaytkuo uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus |
_version_ |
1718389903074525184 |