Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus

Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered.

Guardado en:
Detalles Bibliográficos
Autores principales: Khadar Abdi, Chun-Hsiang Lai, Patricia Paez-Gonzalez, Mark Lay, Joon Pyun, Chay T. Kuo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/e06e0f558da248d395eeb5256e515254
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e06e0f558da248d395eeb5256e515254
record_format dspace
spelling oai:doaj.org-article:e06e0f558da248d395eeb5256e5152542021-12-02T14:41:28ZUncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus10.1038/s41467-018-03812-w2041-1723https://doaj.org/article/e06e0f558da248d395eeb5256e5152542018-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03812-whttps://doaj.org/toc/2041-1723Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered.Khadar AbdiChun-Hsiang LaiPatricia Paez-GonzalezMark LayJoon PyunChay T. KuoNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-16 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Khadar Abdi
Chun-Hsiang Lai
Patricia Paez-Gonzalez
Mark Lay
Joon Pyun
Chay T. Kuo
Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
description Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered.
format article
author Khadar Abdi
Chun-Hsiang Lai
Patricia Paez-Gonzalez
Mark Lay
Joon Pyun
Chay T. Kuo
author_facet Khadar Abdi
Chun-Hsiang Lai
Patricia Paez-Gonzalez
Mark Lay
Joon Pyun
Chay T. Kuo
author_sort Khadar Abdi
title Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
title_short Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
title_full Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
title_fullStr Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
title_full_unstemmed Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
title_sort uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/e06e0f558da248d395eeb5256e515254
work_keys_str_mv AT khadarabdi uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus
AT chunhsianglai uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus
AT patriciapaezgonzalez uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus
AT marklay uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus
AT joonpyun uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus
AT chaytkuo uncoveringinherentcellularplasticityofmulticiliatedependymaleadingtoventricularwalltransformationandhydrocephalus
_version_ 1718389903074525184