Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus
Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered.
Guardado en:
Autores principales: | Khadar Abdi, Chun-Hsiang Lai, Patricia Paez-Gonzalez, Mark Lay, Joon Pyun, Chay T. Kuo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e06e0f558da248d395eeb5256e515254 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effect of Ventricular Elasticity Due to Congenital Hydrocephalus
por: Hemalatha Balasundaram, et al.
Publicado: (2021) -
Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters
por: Xiao Li, et al.
Publicado: (2021) -
Ventricular shunt infection strategic issues on the hardest complication of hydrocephalus treatment.
por: Isabella Nunes Matos, et al.
Publicado: (2020) -
Dynamics of centriole amplification in centrosome-depleted brain multiciliated progenitors
por: Olivier Mercey, et al.
Publicado: (2019) -
CDC20B is required for deuterosome-mediated centriole production in multiciliated cells
por: Diego R. Revinski, et al.
Publicado: (2018)