Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence
Abstract Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. The two predominant histologic variants of RMS, embryonal and alveolar rhabdomyosarcoma (eRMS and aRMS, respectively), carry very different prognoses. While eRMS is associated with an intermediate prognosis, the 5-year...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e07c4697734344668dbd9b9c8ec6c4f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e07c4697734344668dbd9b9c8ec6c4f3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e07c4697734344668dbd9b9c8ec6c4f32021-12-02T15:07:47ZExpression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence10.1038/s41598-021-95355-22045-2322https://doaj.org/article/e07c4697734344668dbd9b9c8ec6c4f32021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95355-2https://doaj.org/toc/2045-2322Abstract Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. The two predominant histologic variants of RMS, embryonal and alveolar rhabdomyosarcoma (eRMS and aRMS, respectively), carry very different prognoses. While eRMS is associated with an intermediate prognosis, the 5-year survival rate of aRMS is less than 30%. The RMS subtypes are also different at the molecular level—eRMS frequently has multiple genetic alterations, including mutations in RAS and TP53, whereas aRMS often has chromosomal translocations resulting in PAX3-FOXO1 or PAX7-FOXO1 fusions, but otherwise has a “quiet” genome. Interestingly, mutations in RAS are rarely found in aRMS. In this study, we explored the role of oncogenic RAS in aRMS. We found that while ectopic oncogenic HRAS expression was tolerated in the human RAS-driven eRMS cell line RD, it was detrimental to cell growth and proliferation in the human aRMS cell line Rh28. Growth inhibition was mediated by oncogene-induced senescence and associated with increased RB pathway activity and expression of the cyclin-dependent kinase inhibitors p16 and p21. Unexpectedly, the human eRMS cell line RMS-YM, a RAS wild-type eRMS cell line, also exhibited growth inhibition in response to oncogenic HRAS in a manner similar to aRMS Rh28 cells. This work suggests that oncogenic RAS is expressed in a context-dependent manner in RMS and may provide insight into the differential origins and therapeutic opportunities for RMS subtypes.Jenny J. LiAlexander R. KovachMargaret DeMoniaKatherine K. SlemmonsKristianne M. OristianCandy ChenCorinne M. LinardicNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jenny J. Li Alexander R. Kovach Margaret DeMonia Katherine K. Slemmons Kristianne M. Oristian Candy Chen Corinne M. Linardic Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence |
description |
Abstract Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. The two predominant histologic variants of RMS, embryonal and alveolar rhabdomyosarcoma (eRMS and aRMS, respectively), carry very different prognoses. While eRMS is associated with an intermediate prognosis, the 5-year survival rate of aRMS is less than 30%. The RMS subtypes are also different at the molecular level—eRMS frequently has multiple genetic alterations, including mutations in RAS and TP53, whereas aRMS often has chromosomal translocations resulting in PAX3-FOXO1 or PAX7-FOXO1 fusions, but otherwise has a “quiet” genome. Interestingly, mutations in RAS are rarely found in aRMS. In this study, we explored the role of oncogenic RAS in aRMS. We found that while ectopic oncogenic HRAS expression was tolerated in the human RAS-driven eRMS cell line RD, it was detrimental to cell growth and proliferation in the human aRMS cell line Rh28. Growth inhibition was mediated by oncogene-induced senescence and associated with increased RB pathway activity and expression of the cyclin-dependent kinase inhibitors p16 and p21. Unexpectedly, the human eRMS cell line RMS-YM, a RAS wild-type eRMS cell line, also exhibited growth inhibition in response to oncogenic HRAS in a manner similar to aRMS Rh28 cells. This work suggests that oncogenic RAS is expressed in a context-dependent manner in RMS and may provide insight into the differential origins and therapeutic opportunities for RMS subtypes. |
format |
article |
author |
Jenny J. Li Alexander R. Kovach Margaret DeMonia Katherine K. Slemmons Kristianne M. Oristian Candy Chen Corinne M. Linardic |
author_facet |
Jenny J. Li Alexander R. Kovach Margaret DeMonia Katherine K. Slemmons Kristianne M. Oristian Candy Chen Corinne M. Linardic |
author_sort |
Jenny J. Li |
title |
Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence |
title_short |
Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence |
title_full |
Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence |
title_fullStr |
Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence |
title_full_unstemmed |
Expression of oncogenic HRAS in human Rh28 and RMS-YM rhabdomyosarcoma cells leads to oncogene-induced senescence |
title_sort |
expression of oncogenic hras in human rh28 and rms-ym rhabdomyosarcoma cells leads to oncogene-induced senescence |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e07c4697734344668dbd9b9c8ec6c4f3 |
work_keys_str_mv |
AT jennyjli expressionofoncogenichrasinhumanrh28andrmsymrhabdomyosarcomacellsleadstooncogeneinducedsenescence AT alexanderrkovach expressionofoncogenichrasinhumanrh28andrmsymrhabdomyosarcomacellsleadstooncogeneinducedsenescence AT margaretdemonia expressionofoncogenichrasinhumanrh28andrmsymrhabdomyosarcomacellsleadstooncogeneinducedsenescence AT katherinekslemmons expressionofoncogenichrasinhumanrh28andrmsymrhabdomyosarcomacellsleadstooncogeneinducedsenescence AT kristiannemoristian expressionofoncogenichrasinhumanrh28andrmsymrhabdomyosarcomacellsleadstooncogeneinducedsenescence AT candychen expressionofoncogenichrasinhumanrh28andrmsymrhabdomyosarcomacellsleadstooncogeneinducedsenescence AT corinnemlinardic expressionofoncogenichrasinhumanrh28andrmsymrhabdomyosarcomacellsleadstooncogeneinducedsenescence |
_version_ |
1718388421039226880 |