Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports
Water depth estimation in seaports is essential for effective port management. This paper presents an empirical approach for water depth determination from satellite imagery through the integration of multiple datasets and machine learning algorithms. The implementation details of the proposed appro...
Guardado en:
Autores principales: | Zhongqiang Wu, Zhihua Mao, Wen Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e087065784ae455c84f41c1e81bb50f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance Evaluation of Machine Learning Algorithms for Seismic Retrofit Cost Estimation Using Structural Parameters
por: Naser Safaeian Hamzehkolaei, et al.
Publicado: (2021) -
Assessment of Land Cover Dynamics and Drivers of Urban Expansion Using Geospatial and Logistic Regression Approach in Wa Municipality, Ghana
por: Mawuli Asempah, et al.
Publicado: (2021) -
Modeling of Indonesia Composite Index using Artificial Neural Network and Multivariate Adaptive Regression Spline (retracted)
por: Mutia Yollanda, et al.
Publicado: (2019) -
Prediction of river water temperature using machine learning algorithms: a tropical river system of India
por: M. Rajesh, et al.
Publicado: (2021) -
Assessment of infiltration models developed using soft computing techniques
por: Parveen Sihag, et al.
Publicado: (2021)