Integrating Multiple Datasets and Machine Learning Algorithms for Satellite-Based Bathymetry in Seaports
Water depth estimation in seaports is essential for effective port management. This paper presents an empirical approach for water depth determination from satellite imagery through the integration of multiple datasets and machine learning algorithms. The implementation details of the proposed appro...
Enregistré dans:
Auteurs principaux: | Zhongqiang Wu, Zhihua Mao, Wen Shen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e087065784ae455c84f41c1e81bb50f0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Performance Evaluation of Machine Learning Algorithms for Seismic Retrofit Cost Estimation Using Structural Parameters
par: Naser Safaeian Hamzehkolaei, et autres
Publié: (2021) -
Assessment of Land Cover Dynamics and Drivers of Urban Expansion Using Geospatial and Logistic Regression Approach in Wa Municipality, Ghana
par: Mawuli Asempah, et autres
Publié: (2021) -
Modeling of Indonesia Composite Index using Artificial Neural Network and Multivariate Adaptive Regression Spline (retracted)
par: Mutia Yollanda, et autres
Publié: (2019) -
Prediction of river water temperature using machine learning algorithms: a tropical river system of India
par: M. Rajesh, et autres
Publié: (2021) -
Assessment of infiltration models developed using soft computing techniques
par: Parveen Sihag, et autres
Publié: (2021)