Investigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance
Battery cell production is a complex process chain with interlinked manufacturing processes. Calendering in particular has an enormous influence on the subsequent manufacturing steps and final cell performance. However, the effects on the mechanical properties of the electrode, in particular, have b...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e0935df157cf4ba4bf0b88407d980dad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e0935df157cf4ba4bf0b88407d980dad |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e0935df157cf4ba4bf0b88407d980dad2021-11-25T18:51:25ZInvestigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance10.3390/pr91120092227-9717https://doaj.org/article/e0935df157cf4ba4bf0b88407d980dad2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-9717/9/11/2009https://doaj.org/toc/2227-9717Battery cell production is a complex process chain with interlinked manufacturing processes. Calendering in particular has an enormous influence on the subsequent manufacturing steps and final cell performance. However, the effects on the mechanical properties of the electrode, in particular, have been insufficiently investigated. For this reason, the impact of different densification rates during calendering on the electrochemical cell performance of NMC811 (LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>) half-cells are investigated to identify the relevant calendering parameters. Based on this investigation, an experimental design has been derived. Electrode elongations after calendering in and orthogonal to the running direction of the NMC811 cathode are investigated in comparison with a hard carbon anode after calendering. Elongations orthogonal to the machine direction are observed to have no major dependencies on the compaction rate during calendering. In the machine direction, however, significant elongation occurs as a dependency of the compaction rate for both the hard carbon anode and the NMC811. In addition, the geometric shape of the NMC811 electrodes after separation into individual sheets is investigated with regard to different compaction rates during calendering. It is shown that the corrugations that occur during calendering are propagated into the single electrode, depending on the compaction rate.Dominik MayerAnn-Kathrin WurbaBenjamin BoldJonathan BerneckerAnna SmithJürgen FleischerMDPI AGarticleelectrode productioncell productionlithium-ion batteryChemical technologyTP1-1185ChemistryQD1-999ENProcesses, Vol 9, Iss 2009, p 2009 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
electrode production cell production lithium-ion battery Chemical technology TP1-1185 Chemistry QD1-999 |
spellingShingle |
electrode production cell production lithium-ion battery Chemical technology TP1-1185 Chemistry QD1-999 Dominik Mayer Ann-Kathrin Wurba Benjamin Bold Jonathan Bernecker Anna Smith Jürgen Fleischer Investigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance |
description |
Battery cell production is a complex process chain with interlinked manufacturing processes. Calendering in particular has an enormous influence on the subsequent manufacturing steps and final cell performance. However, the effects on the mechanical properties of the electrode, in particular, have been insufficiently investigated. For this reason, the impact of different densification rates during calendering on the electrochemical cell performance of NMC811 (LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>) half-cells are investigated to identify the relevant calendering parameters. Based on this investigation, an experimental design has been derived. Electrode elongations after calendering in and orthogonal to the running direction of the NMC811 cathode are investigated in comparison with a hard carbon anode after calendering. Elongations orthogonal to the machine direction are observed to have no major dependencies on the compaction rate during calendering. In the machine direction, however, significant elongation occurs as a dependency of the compaction rate for both the hard carbon anode and the NMC811. In addition, the geometric shape of the NMC811 electrodes after separation into individual sheets is investigated with regard to different compaction rates during calendering. It is shown that the corrugations that occur during calendering are propagated into the single electrode, depending on the compaction rate. |
format |
article |
author |
Dominik Mayer Ann-Kathrin Wurba Benjamin Bold Jonathan Bernecker Anna Smith Jürgen Fleischer |
author_facet |
Dominik Mayer Ann-Kathrin Wurba Benjamin Bold Jonathan Bernecker Anna Smith Jürgen Fleischer |
author_sort |
Dominik Mayer |
title |
Investigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance |
title_short |
Investigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance |
title_full |
Investigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance |
title_fullStr |
Investigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance |
title_full_unstemmed |
Investigation of the Mechanical Behavior of Electrodes after Calendering and Its Influence on Singulation and Cell Performance |
title_sort |
investigation of the mechanical behavior of electrodes after calendering and its influence on singulation and cell performance |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/e0935df157cf4ba4bf0b88407d980dad |
work_keys_str_mv |
AT dominikmayer investigationofthemechanicalbehaviorofelectrodesaftercalenderinganditsinfluenceonsingulationandcellperformance AT annkathrinwurba investigationofthemechanicalbehaviorofelectrodesaftercalenderinganditsinfluenceonsingulationandcellperformance AT benjaminbold investigationofthemechanicalbehaviorofelectrodesaftercalenderinganditsinfluenceonsingulationandcellperformance AT jonathanbernecker investigationofthemechanicalbehaviorofelectrodesaftercalenderinganditsinfluenceonsingulationandcellperformance AT annasmith investigationofthemechanicalbehaviorofelectrodesaftercalenderinganditsinfluenceonsingulationandcellperformance AT jurgenfleischer investigationofthemechanicalbehaviorofelectrodesaftercalenderinganditsinfluenceonsingulationandcellperformance |
_version_ |
1718410682816266240 |