Emergence of lanes and turbulent-like motion in active spinner fluid
Emergent collective behaviour has recently been addressed in systems of self-rotating particles, where motion, in particular, is an emergent phenomenon rather than a basic ingredient. Here, the authors derive a continuum model for mixtures of clockwise and counterclockwise Quincke spinners, demonstr...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e0a3846029764e3a833716e1e4e0d5da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Emergent collective behaviour has recently been addressed in systems of self-rotating particles, where motion, in particular, is an emergent phenomenon rather than a basic ingredient. Here, the authors derive a continuum model for mixtures of clockwise and counterclockwise Quincke spinners, demonstrating the emergence of same-spin phase separation, traffic lanes, sustained turbulent-like motion, and a chirality breaking transition depending on the fluid inertia of the system. |
---|