Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses
Abstract The ability of humans to discriminate enantiomeric odour pairs is substance –specific. Current literature suggests that psychophysical discrimination of odour enantiomers mainly depends on the peripheral processing at the level of the olfactory sensory neurons (OSN). To study the influence...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e0a8b7422b7d465e97f8d4473857a1f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e0a8b7422b7d465e97f8d4473857a1f2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e0a8b7422b7d465e97f8d4473857a1f22021-12-02T16:06:50ZIndistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses10.1038/s41598-017-09594-32045-2322https://doaj.org/article/e0a8b7422b7d465e97f8d4473857a1f22017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-09594-3https://doaj.org/toc/2045-2322Abstract The ability of humans to discriminate enantiomeric odour pairs is substance –specific. Current literature suggests that psychophysical discrimination of odour enantiomers mainly depends on the peripheral processing at the level of the olfactory sensory neurons (OSN). To study the influence of central processing in discrimination, we investigated differences in the electrophysiological responses to psychophysically indistinguishable (+)- and (−)- rose oxide enantiomers at peripheral and central-nervous levels in humans. We recorded the electro-olfactogram (EOG) from the olfactory epithelium and the EEG-derived olfactory event-related potentials (OERP). Results from a psychophysical three alternative forced choice test indicated indistinguishability of the two odour enantiomers. In a total of 19 young participants EOG could be recorded in 74 and OERP in 95% of subjects. Significantly different EOG amplitudes and latencies were recorded in response to the 2 stimuli. However, no such differences in amplitude or latency emerged for the OERP. In conclusion, although the pair of enantiomer could be discriminated at a peripheral level this did not lead to a central-nervous/cognitive differentiation of the two stimuli.Sophia C. PolettiAnnachiara CavazzanaCagdas GuducuMaria LarssonThomas HummelNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sophia C. Poletti Annachiara Cavazzana Cagdas Guducu Maria Larsson Thomas Hummel Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses |
description |
Abstract The ability of humans to discriminate enantiomeric odour pairs is substance –specific. Current literature suggests that psychophysical discrimination of odour enantiomers mainly depends on the peripheral processing at the level of the olfactory sensory neurons (OSN). To study the influence of central processing in discrimination, we investigated differences in the electrophysiological responses to psychophysically indistinguishable (+)- and (−)- rose oxide enantiomers at peripheral and central-nervous levels in humans. We recorded the electro-olfactogram (EOG) from the olfactory epithelium and the EEG-derived olfactory event-related potentials (OERP). Results from a psychophysical three alternative forced choice test indicated indistinguishability of the two odour enantiomers. In a total of 19 young participants EOG could be recorded in 74 and OERP in 95% of subjects. Significantly different EOG amplitudes and latencies were recorded in response to the 2 stimuli. However, no such differences in amplitude or latency emerged for the OERP. In conclusion, although the pair of enantiomer could be discriminated at a peripheral level this did not lead to a central-nervous/cognitive differentiation of the two stimuli. |
format |
article |
author |
Sophia C. Poletti Annachiara Cavazzana Cagdas Guducu Maria Larsson Thomas Hummel |
author_facet |
Sophia C. Poletti Annachiara Cavazzana Cagdas Guducu Maria Larsson Thomas Hummel |
author_sort |
Sophia C. Poletti |
title |
Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses |
title_short |
Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses |
title_full |
Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses |
title_fullStr |
Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses |
title_full_unstemmed |
Indistinguishable odour enantiomers: Differences between peripheral and central-nervous electrophysiological responses |
title_sort |
indistinguishable odour enantiomers: differences between peripheral and central-nervous electrophysiological responses |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/e0a8b7422b7d465e97f8d4473857a1f2 |
work_keys_str_mv |
AT sophiacpoletti indistinguishableodourenantiomersdifferencesbetweenperipheralandcentralnervouselectrophysiologicalresponses AT annachiaracavazzana indistinguishableodourenantiomersdifferencesbetweenperipheralandcentralnervouselectrophysiologicalresponses AT cagdasguducu indistinguishableodourenantiomersdifferencesbetweenperipheralandcentralnervouselectrophysiologicalresponses AT marialarsson indistinguishableodourenantiomersdifferencesbetweenperipheralandcentralnervouselectrophysiologicalresponses AT thomashummel indistinguishableodourenantiomersdifferencesbetweenperipheralandcentralnervouselectrophysiologicalresponses |
_version_ |
1718384873974005760 |