Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures
Complete gene expression deconvolution remains a challenging problem. Here, the authors provide a solution based on the recognition that expression levels of cell type specific genes are mutually linear across mixtures and mutually linear gene clusters correspond to cell type-specific signatures.
Guardado en:
Autores principales: | Konstantin Zaitsev, Monika Bambouskova, Amanda Swain, Maxim N. Artyomov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e0ae9b56ce5441f49af3e03ef9d412aa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust unsupervised deconvolution of linear motifs characterizes 68 protein modifications at proteome scale
por: Theodore G. Smith, et al.
Publicado: (2021) -
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
por: Francesco Vallania, et al.
Publicado: (2018) -
Deconvoluting Wavelengths Leading to Fluorescent Light Induced Inflammation and Cellular Stress in Zebrafish (Danio rerio)
por: Mikki Boswell, et al.
Publicado: (2020) -
Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants
por: Margaret K. R. Donovan, et al.
Publicado: (2020) -
Author Correction: Cellular deconvolution of GTEx tissues powers discovery of disease and cell-type associated regulatory variants
por: Margaret K. R. Donovan, et al.
Publicado: (2020)