A new spectral invariant for quantum graphs
Abstract The Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph. However, to describe spectral properties of differential equations with mixed Dirichlet and Neumann vertex conditions it is necessary t...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e0afc2d00ff44564adfd06cd42d8bc53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e0afc2d00ff44564adfd06cd42d8bc53 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e0afc2d00ff44564adfd06cd42d8bc532021-12-02T16:06:43ZA new spectral invariant for quantum graphs10.1038/s41598-021-94331-02045-2322https://doaj.org/article/e0afc2d00ff44564adfd06cd42d8bc532021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94331-0https://doaj.org/toc/2045-2322Abstract The Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph. However, to describe spectral properties of differential equations with mixed Dirichlet and Neumann vertex conditions it is necessary to introduce a new spectral invariant, the generalized Euler characteristic $$\chi _G:= |V|-|V_D|-|E|$$ χ G : = | V | - | V D | - | E | , with $$|V_D|$$ | V D | denoting the number of Dirichlet vertices. We demonstrate theoretically and experimentally that the generalized Euler characteristic $$\chi _G$$ χ G of quantum graphs and microwave networks can be determined from small sets of lowest eigenfrequencies. If the topology of the graph is known, the generalized Euler characteristic $$\chi _G$$ χ G can be used to determine the number of Dirichlet vertices. That makes the generalized Euler characteristic $$\chi _G$$ χ G a new powerful tool for studying of physical systems modeled by differential equations on metric graphs including isoscattering and neural networks where both Neumann and Dirichlet boundary conditions occur.Michał ŁawniczakPavel KurasovSzymon BauchMałgorzata BiałousAfshin AkhshaniLeszek SirkoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Michał Ławniczak Pavel Kurasov Szymon Bauch Małgorzata Białous Afshin Akhshani Leszek Sirko A new spectral invariant for quantum graphs |
description |
Abstract The Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph. However, to describe spectral properties of differential equations with mixed Dirichlet and Neumann vertex conditions it is necessary to introduce a new spectral invariant, the generalized Euler characteristic $$\chi _G:= |V|-|V_D|-|E|$$ χ G : = | V | - | V D | - | E | , with $$|V_D|$$ | V D | denoting the number of Dirichlet vertices. We demonstrate theoretically and experimentally that the generalized Euler characteristic $$\chi _G$$ χ G of quantum graphs and microwave networks can be determined from small sets of lowest eigenfrequencies. If the topology of the graph is known, the generalized Euler characteristic $$\chi _G$$ χ G can be used to determine the number of Dirichlet vertices. That makes the generalized Euler characteristic $$\chi _G$$ χ G a new powerful tool for studying of physical systems modeled by differential equations on metric graphs including isoscattering and neural networks where both Neumann and Dirichlet boundary conditions occur. |
format |
article |
author |
Michał Ławniczak Pavel Kurasov Szymon Bauch Małgorzata Białous Afshin Akhshani Leszek Sirko |
author_facet |
Michał Ławniczak Pavel Kurasov Szymon Bauch Małgorzata Białous Afshin Akhshani Leszek Sirko |
author_sort |
Michał Ławniczak |
title |
A new spectral invariant for quantum graphs |
title_short |
A new spectral invariant for quantum graphs |
title_full |
A new spectral invariant for quantum graphs |
title_fullStr |
A new spectral invariant for quantum graphs |
title_full_unstemmed |
A new spectral invariant for quantum graphs |
title_sort |
new spectral invariant for quantum graphs |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/e0afc2d00ff44564adfd06cd42d8bc53 |
work_keys_str_mv |
AT michałławniczak anewspectralinvariantforquantumgraphs AT pavelkurasov anewspectralinvariantforquantumgraphs AT szymonbauch anewspectralinvariantforquantumgraphs AT małgorzatabiałous anewspectralinvariantforquantumgraphs AT afshinakhshani anewspectralinvariantforquantumgraphs AT leszeksirko anewspectralinvariantforquantumgraphs AT michałławniczak newspectralinvariantforquantumgraphs AT pavelkurasov newspectralinvariantforquantumgraphs AT szymonbauch newspectralinvariantforquantumgraphs AT małgorzatabiałous newspectralinvariantforquantumgraphs AT afshinakhshani newspectralinvariantforquantumgraphs AT leszeksirko newspectralinvariantforquantumgraphs |
_version_ |
1718384936535195648 |