A new spectral invariant for quantum graphs

Abstract The Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph. However, to describe spectral properties of differential equations with mixed Dirichlet and Neumann vertex conditions it is necessary t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michał Ławniczak, Pavel Kurasov, Szymon Bauch, Małgorzata Białous, Afshin Akhshani, Leszek Sirko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e0afc2d00ff44564adfd06cd42d8bc53
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e0afc2d00ff44564adfd06cd42d8bc53
record_format dspace
spelling oai:doaj.org-article:e0afc2d00ff44564adfd06cd42d8bc532021-12-02T16:06:43ZA new spectral invariant for quantum graphs10.1038/s41598-021-94331-02045-2322https://doaj.org/article/e0afc2d00ff44564adfd06cd42d8bc532021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94331-0https://doaj.org/toc/2045-2322Abstract The Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph. However, to describe spectral properties of differential equations with mixed Dirichlet and Neumann vertex conditions it is necessary to introduce a new spectral invariant, the generalized Euler characteristic $$\chi _G:= |V|-|V_D|-|E|$$ χ G : = | V | - | V D | - | E | , with $$|V_D|$$ | V D | denoting the number of Dirichlet vertices. We demonstrate theoretically and experimentally that the generalized Euler characteristic $$\chi _G$$ χ G of quantum graphs and microwave networks can be determined from small sets of lowest eigenfrequencies. If the topology of the graph is known, the generalized Euler characteristic $$\chi _G$$ χ G can be used to determine the number of Dirichlet vertices. That makes the generalized Euler characteristic $$\chi _G$$ χ G a new powerful tool for studying of physical systems modeled by differential equations on metric graphs including isoscattering and neural networks where both Neumann and Dirichlet boundary conditions occur.Michał ŁawniczakPavel KurasovSzymon BauchMałgorzata BiałousAfshin AkhshaniLeszek SirkoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Michał Ławniczak
Pavel Kurasov
Szymon Bauch
Małgorzata Białous
Afshin Akhshani
Leszek Sirko
A new spectral invariant for quantum graphs
description Abstract The Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph. However, to describe spectral properties of differential equations with mixed Dirichlet and Neumann vertex conditions it is necessary to introduce a new spectral invariant, the generalized Euler characteristic $$\chi _G:= |V|-|V_D|-|E|$$ χ G : = | V | - | V D | - | E | , with $$|V_D|$$ | V D | denoting the number of Dirichlet vertices. We demonstrate theoretically and experimentally that the generalized Euler characteristic $$\chi _G$$ χ G of quantum graphs and microwave networks can be determined from small sets of lowest eigenfrequencies. If the topology of the graph is known, the generalized Euler characteristic $$\chi _G$$ χ G can be used to determine the number of Dirichlet vertices. That makes the generalized Euler characteristic $$\chi _G$$ χ G a new powerful tool for studying of physical systems modeled by differential equations on metric graphs including isoscattering and neural networks where both Neumann and Dirichlet boundary conditions occur.
format article
author Michał Ławniczak
Pavel Kurasov
Szymon Bauch
Małgorzata Białous
Afshin Akhshani
Leszek Sirko
author_facet Michał Ławniczak
Pavel Kurasov
Szymon Bauch
Małgorzata Białous
Afshin Akhshani
Leszek Sirko
author_sort Michał Ławniczak
title A new spectral invariant for quantum graphs
title_short A new spectral invariant for quantum graphs
title_full A new spectral invariant for quantum graphs
title_fullStr A new spectral invariant for quantum graphs
title_full_unstemmed A new spectral invariant for quantum graphs
title_sort new spectral invariant for quantum graphs
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/e0afc2d00ff44564adfd06cd42d8bc53
work_keys_str_mv AT michałławniczak anewspectralinvariantforquantumgraphs
AT pavelkurasov anewspectralinvariantforquantumgraphs
AT szymonbauch anewspectralinvariantforquantumgraphs
AT małgorzatabiałous anewspectralinvariantforquantumgraphs
AT afshinakhshani anewspectralinvariantforquantumgraphs
AT leszeksirko anewspectralinvariantforquantumgraphs
AT michałławniczak newspectralinvariantforquantumgraphs
AT pavelkurasov newspectralinvariantforquantumgraphs
AT szymonbauch newspectralinvariantforquantumgraphs
AT małgorzatabiałous newspectralinvariantforquantumgraphs
AT afshinakhshani newspectralinvariantforquantumgraphs
AT leszeksirko newspectralinvariantforquantumgraphs
_version_ 1718384936535195648