Leveraging graph-based hierarchical medical entity embedding for healthcare applications
Abstract Automatic representation learning of key entities in electronic health record (EHR) data is a critical step for healthcare data mining that turns heterogeneous medical records into structured and actionable information. Here we propose ME2Vec, an algorithmic framework for learning continuou...
Guardado en:
Autores principales: | Tong Wu, Yunlong Wang, Yue Wang, Emily Zhao, Yilian Yuan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e0c414c7ba28497f8db9cf05f2a9f717 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multitask Healthcare Management Recommendation System Leveraging Knowledge Graph
por: Wanheng Liu, et al.
Publicado: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
por: Won-Min Song, et al.
Publicado: (2012) -
Leveraging network analysis to evaluate biomedical named entity recognition tools
por: Eduardo P. García del Valle, et al.
Publicado: (2021) -
Identifying disease-gene associations using a convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions.
por: Wonjun Choi, et al.
Publicado: (2021) -
Graph Embedding for Scholar Recommendation in Academic Social Networks
por: Chengzhe Yuan, et al.
Publicado: (2021)