The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice

The study of naturalistic social behavior requires quantification of animals’ interactions. This is generally done through manual annotation—a highly time-consuming and tedious process. Recent advances in computer vision enable tracking the pose (posture) of freely behaving animals. However, automat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cristina Segalin, Jalani Williams, Tomomi Karigo, May Hui, Moriel Zelikowsky, Jennifer J Sun, Pietro Perona, David J Anderson, Ann Kennedy
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e0cf9f3504db4d9c9ff63dc50df4227c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e0cf9f3504db4d9c9ff63dc50df4227c
record_format dspace
spelling oai:doaj.org-article:e0cf9f3504db4d9c9ff63dc50df4227c2021-11-30T15:44:26ZThe Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice10.7554/eLife.637202050-084Xe63720https://doaj.org/article/e0cf9f3504db4d9c9ff63dc50df4227c2021-11-01T00:00:00Zhttps://elifesciences.org/articles/63720https://doaj.org/toc/2050-084XThe study of naturalistic social behavior requires quantification of animals’ interactions. This is generally done through manual annotation—a highly time-consuming and tedious process. Recent advances in computer vision enable tracking the pose (posture) of freely behaving animals. However, automatically and accurately classifying complex social behaviors remains technically challenging. We introduce the Mouse Action Recognition System (MARS), an automated pipeline for pose estimation and behavior quantification in pairs of freely interacting mice. We compare MARS’s annotations to human annotations and find that MARS’s pose estimation and behavior classification achieve human-level performance. We also release the pose and annotation datasets used to train MARS to serve as community benchmarks and resources. Finally, we introduce the Behavior Ensemble and Neural Trajectory Observatory (BENTO), a graphical user interface for analysis of multimodal neuroscience datasets. Together, MARS and BENTO provide an end-to-end pipeline for behavior data extraction and analysis in a package that is user-friendly and easily modifiable.Cristina SegalinJalani WilliamsTomomi KarigoMay HuiMoriel ZelikowskyJennifer J SunPietro PeronaDavid J AndersonAnn KennedyeLife Sciences Publications Ltdarticlesocial behaviorpose estimationmachine learningcomputer visionmicroendoscopic imagingsoftwareMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic social behavior
pose estimation
machine learning
computer vision
microendoscopic imaging
software
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle social behavior
pose estimation
machine learning
computer vision
microendoscopic imaging
software
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Cristina Segalin
Jalani Williams
Tomomi Karigo
May Hui
Moriel Zelikowsky
Jennifer J Sun
Pietro Perona
David J Anderson
Ann Kennedy
The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice
description The study of naturalistic social behavior requires quantification of animals’ interactions. This is generally done through manual annotation—a highly time-consuming and tedious process. Recent advances in computer vision enable tracking the pose (posture) of freely behaving animals. However, automatically and accurately classifying complex social behaviors remains technically challenging. We introduce the Mouse Action Recognition System (MARS), an automated pipeline for pose estimation and behavior quantification in pairs of freely interacting mice. We compare MARS’s annotations to human annotations and find that MARS’s pose estimation and behavior classification achieve human-level performance. We also release the pose and annotation datasets used to train MARS to serve as community benchmarks and resources. Finally, we introduce the Behavior Ensemble and Neural Trajectory Observatory (BENTO), a graphical user interface for analysis of multimodal neuroscience datasets. Together, MARS and BENTO provide an end-to-end pipeline for behavior data extraction and analysis in a package that is user-friendly and easily modifiable.
format article
author Cristina Segalin
Jalani Williams
Tomomi Karigo
May Hui
Moriel Zelikowsky
Jennifer J Sun
Pietro Perona
David J Anderson
Ann Kennedy
author_facet Cristina Segalin
Jalani Williams
Tomomi Karigo
May Hui
Moriel Zelikowsky
Jennifer J Sun
Pietro Perona
David J Anderson
Ann Kennedy
author_sort Cristina Segalin
title The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice
title_short The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice
title_full The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice
title_fullStr The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice
title_full_unstemmed The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice
title_sort mouse action recognition system (mars) software pipeline for automated analysis of social behaviors in mice
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/e0cf9f3504db4d9c9ff63dc50df4227c
work_keys_str_mv AT cristinasegalin themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT jalaniwilliams themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT tomomikarigo themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT mayhui themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT morielzelikowsky themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT jenniferjsun themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT pietroperona themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT davidjanderson themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT annkennedy themouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT cristinasegalin mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT jalaniwilliams mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT tomomikarigo mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT mayhui mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT morielzelikowsky mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT jenniferjsun mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT pietroperona mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT davidjanderson mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
AT annkennedy mouseactionrecognitionsystemmarssoftwarepipelineforautomatedanalysisofsocialbehaviorsinmice
_version_ 1718406535683506176