Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors

Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Olaf Bar, Łukasz Bibrzycki, Michał Niedźwiecki, Marcin Piekarczyk, Krzysztof Rzecki, Tomasz Sośnicki, Sławomir Stuglik, Michał Frontczak, Piotr Homola, David E. Alvarez-Castillo, Thomas Andersen, Arman Tursunov
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/e0d447a779a44da8978b952d679c1456
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e0d447a779a44da8978b952d679c1456
record_format dspace
spelling oai:doaj.org-article:e0d447a779a44da8978b952d679c14562021-11-25T18:58:44ZZernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors10.3390/s212277181424-8220https://doaj.org/article/e0d447a779a44da8978b952d679c14562021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7718https://doaj.org/toc/1424-8220Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for establishing a connection between features and geometrical properties of candidate hits. Apart from basic classifiers we also consider their ensemble extensions and find these extensions generally better performing than basic versions, with an average recognition accuracy of 88%.Olaf BarŁukasz BibrzyckiMichał NiedźwieckiMarcin PiekarczykKrzysztof RzeckiTomasz SośnickiSławomir StuglikMichał FrontczakPiotr HomolaDavid E. Alvarez-CastilloThomas AndersenArman TursunovMDPI AGarticleCMOS sensorsfeature-based classificationZernike momentsmachine learningcomputer visionChemical technologyTP1-1185ENSensors, Vol 21, Iss 7718, p 7718 (2021)
institution DOAJ
collection DOAJ
language EN
topic CMOS sensors
feature-based classification
Zernike moments
machine learning
computer vision
Chemical technology
TP1-1185
spellingShingle CMOS sensors
feature-based classification
Zernike moments
machine learning
computer vision
Chemical technology
TP1-1185
Olaf Bar
Łukasz Bibrzycki
Michał Niedźwiecki
Marcin Piekarczyk
Krzysztof Rzecki
Tomasz Sośnicki
Sławomir Stuglik
Michał Frontczak
Piotr Homola
David E. Alvarez-Castillo
Thomas Andersen
Arman Tursunov
Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
description Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for establishing a connection between features and geometrical properties of candidate hits. Apart from basic classifiers we also consider their ensemble extensions and find these extensions generally better performing than basic versions, with an average recognition accuracy of 88%.
format article
author Olaf Bar
Łukasz Bibrzycki
Michał Niedźwiecki
Marcin Piekarczyk
Krzysztof Rzecki
Tomasz Sośnicki
Sławomir Stuglik
Michał Frontczak
Piotr Homola
David E. Alvarez-Castillo
Thomas Andersen
Arman Tursunov
author_facet Olaf Bar
Łukasz Bibrzycki
Michał Niedźwiecki
Marcin Piekarczyk
Krzysztof Rzecki
Tomasz Sośnicki
Sławomir Stuglik
Michał Frontczak
Piotr Homola
David E. Alvarez-Castillo
Thomas Andersen
Arman Tursunov
author_sort Olaf Bar
title Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_short Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_full Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_fullStr Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_full_unstemmed Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
title_sort zernike moment based classification of cosmic ray candidate hits from cmos sensors
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/e0d447a779a44da8978b952d679c1456
work_keys_str_mv AT olafbar zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT łukaszbibrzycki zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT michałniedzwiecki zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT marcinpiekarczyk zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT krzysztofrzecki zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT tomaszsosnicki zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT sławomirstuglik zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT michałfrontczak zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT piotrhomola zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT davidealvarezcastillo zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT thomasandersen zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
AT armantursunov zernikemomentbasedclassificationofcosmicraycandidatehitsfromcmossensors
_version_ 1718410496620625920