Intelligent Fault Diagnosis Method of Wind Turbines Planetary Gearboxes Based on a Multi-Scale Dense Fusion Network
Due to the powerful capability of feature extraction, convolutional neural network (CNN) is increasingly applied to the fault diagnosis of key components of rotating machineries. Due to the shortcomings of traditional CNN-based fault diagnosis methods, the continuous convolution and pooling operatio...
Guardado en:
Autores principales: | Xinghua Huang, Yuanyuan Li, Yi Chai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e0d9823bd5dd49c08d17c062aa9d07a1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of Generalized Composite Multiscale Lempel–Ziv Complexity in Identifying Wind Turbine Gearbox Faults
por: Xiaoan Yan, et al.
Publicado: (2021) -
Qualitative study of Riccati difference equation on maneuvering target tracking and fault diagnosis of wind turbine gearbox
por: M. Sumathy, et al.
Publicado: (2019) -
Fault Detection and Condition Monitoring of PMSGs in Offshore Wind Turbines
por: Nuno M. A. Freire, et al.
Publicado: (2021) -
Review and Perspectives of Machine Learning Methods for Wind Turbine Fault Diagnosis
por: Mingzhu Tang, et al.
Publicado: (2021) -
Fault-Tolerant Cooperative Control of Large-Scale Wind Farms and Wind Farm Clusters
por: Saeedreza Jadidi, et al.
Publicado: (2021)