Machine learning identifies scale-free properties in disordered materials

The performance of a trained neural network may be biased even by generic features of its architecture. Yu et al. ask for the disordered lattice of atoms producing a certain wave localization and the network prefers to answer with power-law distributed displacements.

Guardado en:
Detalles Bibliográficos
Autores principales: Sunkyu Yu, Xianji Piao, Namkyoo Park
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/e0f5eff1660b4e30a8c655466ff74960
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The performance of a trained neural network may be biased even by generic features of its architecture. Yu et al. ask for the disordered lattice of atoms producing a certain wave localization and the network prefers to answer with power-law distributed displacements.