Machine learning identifies scale-free properties in disordered materials
The performance of a trained neural network may be biased even by generic features of its architecture. Yu et al. ask for the disordered lattice of atoms producing a certain wave localization and the network prefers to answer with power-law distributed displacements.
Guardado en:
Autores principales: | Sunkyu Yu, Xianji Piao, Namkyoo Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e0f5eff1660b4e30a8c655466ff74960 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Target decoupling in coupled systems resistant to random perturbation
por: Sunkyu Yu, et al.
Publicado: (2017) -
Identifying domains of applicability of machine learning models for materials science
por: Christopher Sutton, et al.
Publicado: (2020) -
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
por: Joshua E. Lewis, et al.
Publicado: (2021) -
Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
por: A. Sanchez-Gonzalez, et al.
Publicado: (2017) -
Energy-free machine learning force field for aluminum
por: Ivan Kruglov, et al.
Publicado: (2017)