Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.

Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, howe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hélène Arnould, Vincent Baudouin, Anne Baudry, Luiz W Ribeiro, Hector Ardila-Osorio, Mathéa Pietri, Cédric Caradeuc, Cynthia Soultawi, Declan Williams, Marjorie Alvarez, Carole Crozet, Fatima Djouadi, Mireille Laforge, Gildas Bertho, Odile Kellermann, Jean-Marie Launay, Gerold Schmitt-Ulms, Benoit Schneider
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/e0f84de0ab084344b839c7190a6a9010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e0f84de0ab084344b839c7190a6a9010
record_format dspace
spelling oai:doaj.org-article:e0f84de0ab084344b839c7190a6a90102021-12-02T20:00:04ZLoss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.1553-73661553-737410.1371/journal.ppat.1009991https://doaj.org/article/e0f84de0ab084344b839c7190a6a90102021-10-01T00:00:00Zhttps://doi.org/10.1371/journal.ppat.1009991https://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.Hélène ArnouldVincent BaudouinAnne BaudryLuiz W RibeiroHector Ardila-OsorioMathéa PietriCédric CaradeucCynthia SoultawiDeclan WilliamsMarjorie AlvarezCarole CrozetFatima DjouadiMireille LaforgeGildas BerthoOdile KellermannJean-Marie LaunayGerold Schmitt-UlmsBenoit SchneiderPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 17, Iss 10, p e1009991 (2021)
institution DOAJ
collection DOAJ
language EN
topic Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
spellingShingle Immunologic diseases. Allergy
RC581-607
Biology (General)
QH301-705.5
Hélène Arnould
Vincent Baudouin
Anne Baudry
Luiz W Ribeiro
Hector Ardila-Osorio
Mathéa Pietri
Cédric Caradeuc
Cynthia Soultawi
Declan Williams
Marjorie Alvarez
Carole Crozet
Fatima Djouadi
Mireille Laforge
Gildas Bertho
Odile Kellermann
Jean-Marie Launay
Gerold Schmitt-Ulms
Benoit Schneider
Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.
description Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.
format article
author Hélène Arnould
Vincent Baudouin
Anne Baudry
Luiz W Ribeiro
Hector Ardila-Osorio
Mathéa Pietri
Cédric Caradeuc
Cynthia Soultawi
Declan Williams
Marjorie Alvarez
Carole Crozet
Fatima Djouadi
Mireille Laforge
Gildas Bertho
Odile Kellermann
Jean-Marie Launay
Gerold Schmitt-Ulms
Benoit Schneider
author_facet Hélène Arnould
Vincent Baudouin
Anne Baudry
Luiz W Ribeiro
Hector Ardila-Osorio
Mathéa Pietri
Cédric Caradeuc
Cynthia Soultawi
Declan Williams
Marjorie Alvarez
Carole Crozet
Fatima Djouadi
Mireille Laforge
Gildas Bertho
Odile Kellermann
Jean-Marie Launay
Gerold Schmitt-Ulms
Benoit Schneider
author_sort Hélène Arnould
title Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.
title_short Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.
title_full Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.
title_fullStr Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.
title_full_unstemmed Loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.
title_sort loss of prion protein control of glucose metabolism promotes neurodegeneration in model of prion diseases.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/e0f84de0ab084344b839c7190a6a9010
work_keys_str_mv AT helenearnould lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT vincentbaudouin lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT annebaudry lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT luizwribeiro lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT hectorardilaosorio lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT matheapietri lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT cedriccaradeuc lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT cynthiasoultawi lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT declanwilliams lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT marjoriealvarez lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT carolecrozet lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT fatimadjouadi lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT mireillelaforge lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT gildasbertho lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT odilekellermann lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT jeanmarielaunay lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT geroldschmittulms lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
AT benoitschneider lossofprionproteincontrolofglucosemetabolismpromotesneurodegenerationinmodelofpriondiseases
_version_ 1718375752944058368