Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks

Abstract For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the average probability to count n 1, … n r particles in a small number r ≪ N of binned-together output ports takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Valery S. Shchesnovich
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e10c85d538e344e082b1e60d1e9133f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e10c85d538e344e082b1e60d1e9133f7
record_format dspace
spelling oai:doaj.org-article:e10c85d538e344e082b1e60d1e9133f72021-12-02T12:32:34ZAsymptotic Gaussian law for noninteracting indistinguishable particles in random networks10.1038/s41598-017-00044-82045-2322https://doaj.org/article/e10c85d538e344e082b1e60d1e9133f72017-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00044-8https://doaj.org/toc/2045-2322Abstract For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the average probability to count n 1, … n r particles in a small number r ≪ N of binned-together output ports takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known asymptotic law for distinguishable particles, governed by a multinomial distribution, modified by the quantum statistics with stronger effect for greater particle density N/M. Furthermore, it is shown that the same Gaussian law is the asymptotic form of the probability to count particles at the output bins of a fixed multiport with the averaging performed over all possible configurations of the particles in the input ports. In the limit N → ∞, the average counting probability for indistinguishable bosons, fermions, and distinguishable particles differs only at a non-vanishing particle density N/M and only for a singular binning K/M → 1, where K output ports belong to a single bin.Valery S. ShchesnovichNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Valery S. Shchesnovich
Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks
description Abstract For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the average probability to count n 1, … n r particles in a small number r ≪ N of binned-together output ports takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known asymptotic law for distinguishable particles, governed by a multinomial distribution, modified by the quantum statistics with stronger effect for greater particle density N/M. Furthermore, it is shown that the same Gaussian law is the asymptotic form of the probability to count particles at the output bins of a fixed multiport with the averaging performed over all possible configurations of the particles in the input ports. In the limit N → ∞, the average counting probability for indistinguishable bosons, fermions, and distinguishable particles differs only at a non-vanishing particle density N/M and only for a singular binning K/M → 1, where K output ports belong to a single bin.
format article
author Valery S. Shchesnovich
author_facet Valery S. Shchesnovich
author_sort Valery S. Shchesnovich
title Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks
title_short Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks
title_full Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks
title_fullStr Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks
title_full_unstemmed Asymptotic Gaussian law for noninteracting indistinguishable particles in random networks
title_sort asymptotic gaussian law for noninteracting indistinguishable particles in random networks
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/e10c85d538e344e082b1e60d1e9133f7
work_keys_str_mv AT valerysshchesnovich asymptoticgaussianlawfornoninteractingindistinguishableparticlesinrandomnetworks
_version_ 1718394068507033600