Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces

An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The mini...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Ohnita Yoshihiro
Format: article
Langue:EN
Publié: De Gruyter 2019
Sujets:
Accès en ligne:https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is one of invariants under Hamiltonian isotopies and very fundamental to study the Floer homology for intersections of Lagrangian submanifolds. In this paper we show a Lie theoretic formula for the minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces, and provide some examples of the calculation by the formula.