Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces

An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The mini...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ohnita Yoshihiro
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e12e4dcda7ed4b12b6bc07f3fad4215f
record_format dspace
spelling oai:doaj.org-article:e12e4dcda7ed4b12b6bc07f3fad4215f2021-12-02T17:14:47ZMinimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces2300-744310.1515/coma-2019-0016https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f2019-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0016https://doaj.org/toc/2300-7443An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is one of invariants under Hamiltonian isotopies and very fundamental to study the Floer homology for intersections of Lagrangian submanifolds. In this paper we show a Lie theoretic formula for the minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces, and provide some examples of the calculation by the formula.Ohnita YoshihiroDe Gruyterarticler-spaceseinstein-kähler c-spacesmonotone lagrangian submanifoldsminimal maslov numberprimary: 53c40secondary: 53c42, 53d12MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 303-319 (2019)
institution DOAJ
collection DOAJ
language EN
topic r-spaces
einstein-kähler c-spaces
monotone lagrangian submanifolds
minimal maslov number
primary: 53c40
secondary: 53c42, 53d12
Mathematics
QA1-939
spellingShingle r-spaces
einstein-kähler c-spaces
monotone lagrangian submanifolds
minimal maslov number
primary: 53c40
secondary: 53c42, 53d12
Mathematics
QA1-939
Ohnita Yoshihiro
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
description An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is one of invariants under Hamiltonian isotopies and very fundamental to study the Floer homology for intersections of Lagrangian submanifolds. In this paper we show a Lie theoretic formula for the minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces, and provide some examples of the calculation by the formula.
format article
author Ohnita Yoshihiro
author_facet Ohnita Yoshihiro
author_sort Ohnita Yoshihiro
title Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
title_short Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
title_full Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
title_fullStr Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
title_full_unstemmed Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
title_sort minimal maslov number of r-spaces canonically embedded in einstein-kähler c-spaces
publisher De Gruyter
publishDate 2019
url https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f
work_keys_str_mv AT ohnitayoshihiro minimalmaslovnumberofrspacescanonicallyembeddedineinsteinkahlercspaces
_version_ 1718381292700041216