Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The mini...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e12e4dcda7ed4b12b6bc07f3fad4215f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e12e4dcda7ed4b12b6bc07f3fad4215f2021-12-02T17:14:47ZMinimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces2300-744310.1515/coma-2019-0016https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f2019-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0016https://doaj.org/toc/2300-7443An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is one of invariants under Hamiltonian isotopies and very fundamental to study the Floer homology for intersections of Lagrangian submanifolds. In this paper we show a Lie theoretic formula for the minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces, and provide some examples of the calculation by the formula.Ohnita YoshihiroDe Gruyterarticler-spaceseinstein-kähler c-spacesmonotone lagrangian submanifoldsminimal maslov numberprimary: 53c40secondary: 53c42, 53d12MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 303-319 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
r-spaces einstein-kähler c-spaces monotone lagrangian submanifolds minimal maslov number primary: 53c40 secondary: 53c42, 53d12 Mathematics QA1-939 |
spellingShingle |
r-spaces einstein-kähler c-spaces monotone lagrangian submanifolds minimal maslov number primary: 53c40 secondary: 53c42, 53d12 Mathematics QA1-939 Ohnita Yoshihiro Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces |
description |
An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is one of invariants under Hamiltonian isotopies and very fundamental to study the Floer homology for intersections of Lagrangian submanifolds. In this paper we show a Lie theoretic formula for the minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces, and provide some examples of the calculation by the formula. |
format |
article |
author |
Ohnita Yoshihiro |
author_facet |
Ohnita Yoshihiro |
author_sort |
Ohnita Yoshihiro |
title |
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces |
title_short |
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces |
title_full |
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces |
title_fullStr |
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces |
title_full_unstemmed |
Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces |
title_sort |
minimal maslov number of r-spaces canonically embedded in einstein-kähler c-spaces |
publisher |
De Gruyter |
publishDate |
2019 |
url |
https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f |
work_keys_str_mv |
AT ohnitayoshihiro minimalmaslovnumberofrspacescanonicallyembeddedineinsteinkahlercspaces |
_version_ |
1718381292700041216 |