Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The mini...
Enregistré dans:
Auteur principal: | Ohnita Yoshihiro |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
par: Miyaoka Reiko, et autres
Publié: (2019) -
Toric extremal Kähler-Ricci solitons are Kähler-Einstein
par: Calamai Simone, et autres
Publié: (2017) -
Kähler-Einstein metrics: Old and New
par: Angella Daniele, et autres
Publié: (2017) -
On Kähler-like and G-Kähler-like almost Hermitian manifolds
par: Kawamura Masaya
Publié: (2020) -
G2-metrics arising from non-integrable special Lagrangian fibrations
par: Chihara Ryohei
Publié: (2019)