Minimal Maslov number of R-spaces canonically embedded in Einstein-Kähler C-spaces
An R-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each R-space has the canonical embedding into a Kähler C-space as a real form, and thus a compact embedded totally geodesic Lagrangian submanifold. The mini...
Guardado en:
Autor principal: | Ohnita Yoshihiro |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e12e4dcda7ed4b12b6bc07f3fad4215f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
por: Miyaoka Reiko, et al.
Publicado: (2019) -
Toric extremal Kähler-Ricci solitons are Kähler-Einstein
por: Calamai Simone, et al.
Publicado: (2017) -
Kähler-Einstein metrics: Old and New
por: Angella Daniele, et al.
Publicado: (2017) -
On Kähler-like and G-Kähler-like almost Hermitian manifolds
por: Kawamura Masaya
Publicado: (2020) -
G2-metrics arising from non-integrable special Lagrangian fibrations
por: Chihara Ryohei
Publicado: (2019)