Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.

A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute cognitive behaviour) must explain the systematicity property--why our cognitive capacities are organized into particular groups of capacities, rather than some other, arbitrary co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Steven Phillips, William H Wilson
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
Acceso en línea:https://doaj.org/article/e14de81a409542bfbfa35526b264aa68
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e14de81a409542bfbfa35526b264aa68
record_format dspace
spelling oai:doaj.org-article:e14de81a409542bfbfa35526b264aa682021-11-18T05:50:22ZCategorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.1553-734X1553-735810.1371/journal.pcbi.1002102https://doaj.org/article/e14de81a409542bfbfa35526b264aa682011-08-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21857816/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute cognitive behaviour) must explain the systematicity property--why our cognitive capacities are organized into particular groups of capacities, rather than some other, arbitrary collection. The classical account supposes: (1) syntactically compositional representations; and (2) processes that are sensitive to--compatible with--their structure. Classical compositionality, however, does not explain why these two components must be compatible; they are only compatible by the ad hoc assumption (convention) of employing the same mode of (concatenative) compositionality (e.g., prefix/postfix, where a relation symbol is always prepended/appended to the symbols for the related entities). Architectures employing mixed modes do not support systematicity. Recently, we proposed an alternative explanation without ad hoc assumptions, using category theory. Here, we extend our explanation to domains that are quasi-systematic (e.g., aspects of most languages), where the domain includes some but not all possible combinations of constituents. The central category-theoretic construct is an adjunction involving pullbacks, where the primary focus is on the relationship between processes modelled as functors, rather than the representations. A functor is a structure-preserving map (or construction, for our purposes). An adjunction guarantees that the only pairings of functors are the systematic ones. Thus, (quasi-)systematicity is a necessary consequence of a categorial cognitive architecture whose basic processes are functors that participate in adjunctions.Steven PhillipsWilliam H WilsonPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 7, Iss 8, p e1002102 (2011)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Steven Phillips
William H Wilson
Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.
description A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute cognitive behaviour) must explain the systematicity property--why our cognitive capacities are organized into particular groups of capacities, rather than some other, arbitrary collection. The classical account supposes: (1) syntactically compositional representations; and (2) processes that are sensitive to--compatible with--their structure. Classical compositionality, however, does not explain why these two components must be compatible; they are only compatible by the ad hoc assumption (convention) of employing the same mode of (concatenative) compositionality (e.g., prefix/postfix, where a relation symbol is always prepended/appended to the symbols for the related entities). Architectures employing mixed modes do not support systematicity. Recently, we proposed an alternative explanation without ad hoc assumptions, using category theory. Here, we extend our explanation to domains that are quasi-systematic (e.g., aspects of most languages), where the domain includes some but not all possible combinations of constituents. The central category-theoretic construct is an adjunction involving pullbacks, where the primary focus is on the relationship between processes modelled as functors, rather than the representations. A functor is a structure-preserving map (or construction, for our purposes). An adjunction guarantees that the only pairings of functors are the systematic ones. Thus, (quasi-)systematicity is a necessary consequence of a categorial cognitive architecture whose basic processes are functors that participate in adjunctions.
format article
author Steven Phillips
William H Wilson
author_facet Steven Phillips
William H Wilson
author_sort Steven Phillips
title Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.
title_short Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.
title_full Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.
title_fullStr Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.
title_full_unstemmed Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.
title_sort categorial compositionality ii: universal constructions and a general theory of (quasi-)systematicity in human cognition.
publisher Public Library of Science (PLoS)
publishDate 2011
url https://doaj.org/article/e14de81a409542bfbfa35526b264aa68
work_keys_str_mv AT stevenphillips categorialcompositionalityiiuniversalconstructionsandageneraltheoryofquasisystematicityinhumancognition
AT williamhwilson categorialcompositionalityiiuniversalconstructionsandageneraltheoryofquasisystematicityinhumancognition
_version_ 1718424822884597760