Diffusion weighted image denoising using overcomplete local PCA.
Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into considera...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/e17bd996a8974884b00dc4fae7b67b1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:e17bd996a8974884b00dc4fae7b67b1b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:e17bd996a8974884b00dc4fae7b67b1b2021-11-18T08:57:14ZDiffusion weighted image denoising using overcomplete local PCA.1932-620310.1371/journal.pone.0073021https://doaj.org/article/e17bd996a8974884b00dc4fae7b67b1b2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24019889/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters.José V ManjónPierrick CoupéLuis ConchaAntonio BuadesD Louis CollinsMontserrat RoblesPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 9, p e73021 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q José V Manjón Pierrick Coupé Luis Concha Antonio Buades D Louis Collins Montserrat Robles Diffusion weighted image denoising using overcomplete local PCA. |
description |
Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters. |
format |
article |
author |
José V Manjón Pierrick Coupé Luis Concha Antonio Buades D Louis Collins Montserrat Robles |
author_facet |
José V Manjón Pierrick Coupé Luis Concha Antonio Buades D Louis Collins Montserrat Robles |
author_sort |
José V Manjón |
title |
Diffusion weighted image denoising using overcomplete local PCA. |
title_short |
Diffusion weighted image denoising using overcomplete local PCA. |
title_full |
Diffusion weighted image denoising using overcomplete local PCA. |
title_fullStr |
Diffusion weighted image denoising using overcomplete local PCA. |
title_full_unstemmed |
Diffusion weighted image denoising using overcomplete local PCA. |
title_sort |
diffusion weighted image denoising using overcomplete local pca. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/e17bd996a8974884b00dc4fae7b67b1b |
work_keys_str_mv |
AT josevmanjon diffusionweightedimagedenoisingusingovercompletelocalpca AT pierrickcoupe diffusionweightedimagedenoisingusingovercompletelocalpca AT luisconcha diffusionweightedimagedenoisingusingovercompletelocalpca AT antoniobuades diffusionweightedimagedenoisingusingovercompletelocalpca AT dlouiscollins diffusionweightedimagedenoisingusingovercompletelocalpca AT montserratrobles diffusionweightedimagedenoisingusingovercompletelocalpca |
_version_ |
1718421114385858560 |