Diffusion weighted image denoising using overcomplete local PCA.

Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into considera...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: José V Manjón, Pierrick Coupé, Luis Concha, Antonio Buades, D Louis Collins, Montserrat Robles
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/e17bd996a8974884b00dc4fae7b67b1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:e17bd996a8974884b00dc4fae7b67b1b
record_format dspace
spelling oai:doaj.org-article:e17bd996a8974884b00dc4fae7b67b1b2021-11-18T08:57:14ZDiffusion weighted image denoising using overcomplete local PCA.1932-620310.1371/journal.pone.0073021https://doaj.org/article/e17bd996a8974884b00dc4fae7b67b1b2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24019889/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters.José V ManjónPierrick CoupéLuis ConchaAntonio BuadesD Louis CollinsMontserrat RoblesPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 9, p e73021 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
José V Manjón
Pierrick Coupé
Luis Concha
Antonio Buades
D Louis Collins
Montserrat Robles
Diffusion weighted image denoising using overcomplete local PCA.
description Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters.
format article
author José V Manjón
Pierrick Coupé
Luis Concha
Antonio Buades
D Louis Collins
Montserrat Robles
author_facet José V Manjón
Pierrick Coupé
Luis Concha
Antonio Buades
D Louis Collins
Montserrat Robles
author_sort José V Manjón
title Diffusion weighted image denoising using overcomplete local PCA.
title_short Diffusion weighted image denoising using overcomplete local PCA.
title_full Diffusion weighted image denoising using overcomplete local PCA.
title_fullStr Diffusion weighted image denoising using overcomplete local PCA.
title_full_unstemmed Diffusion weighted image denoising using overcomplete local PCA.
title_sort diffusion weighted image denoising using overcomplete local pca.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/e17bd996a8974884b00dc4fae7b67b1b
work_keys_str_mv AT josevmanjon diffusionweightedimagedenoisingusingovercompletelocalpca
AT pierrickcoupe diffusionweightedimagedenoisingusingovercompletelocalpca
AT luisconcha diffusionweightedimagedenoisingusingovercompletelocalpca
AT antoniobuades diffusionweightedimagedenoisingusingovercompletelocalpca
AT dlouiscollins diffusionweightedimagedenoisingusingovercompletelocalpca
AT montserratrobles diffusionweightedimagedenoisingusingovercompletelocalpca
_version_ 1718421114385858560